371 research outputs found

    Multilayer stag beetle elytra perform better under external loading via non-symmetric bending properties

    Get PDF
    FEM images showing the von-Mises stress distribution (unit of measure GPa) in the wing and the beetle body under a concentrated load of 0.5 N .A) real structure with void, B) elytra with no void

    Assessing marine ecosystem services richness and exposure to anthropogenic threats in small sea areas: A case study for the Lithuanian sea space

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordThe Lithuanian sea space belongs to the smallest sea areas in Europe. The sea space incorporates multiple marine ecosystem services (MES) that support human-wellbeing and sustain maritime economies, but is also subjected to intensive anthropogenic activities that can affect its vulnerable ecological components. We present a flexible geospatial methodology to assess MES richness (MESR) and to analyse areas of exposure of MES to human impacts using a MES exposure index (MESEx). Source of anthropogenic threats to MES were firstly derived from the Marine Strategy Framework Directive and include marine litter (from ports and shipping), underwater noise (from offshore pile driving and shipping) and hazardous substances (from oil extraction platforms). Results were presented for the three main planning areas in Lithuania, the Lithuanian Coastal Stripe, territorial waters and EEZ. In detail, areas of highest MESR are located in the coastal areas of the Lithuanian Mainland Coast that are particularly rich in ecosystem services such as nursery function from for Baltic Herring and cultural services related to valuable recreational resorts, landscape aesthetic values and natural heritage sites. Modelled pressure exposure on selected MES show that cultural ecosystem services in proximity of Klaipėda Port can be particularly affected by marine litter accumulation phenomena, while transboundary effects of potential oil spills from D6-Platform (Kaliningrad Region) can affect valuable fish provisioning areas and coastal cultural values in the Curonian Spit. Results were discussed for the relevance in MES assessment for marine spatial planning in small sea areas and the methodological outlook of the application of geospatial techniques on cumulative impacts assessment within this region of the Baltic Sea

    A new vertebrate for Europe: the discovery of a range-restricted relict viper in the western Italian Alps

    Get PDF
    We describe Vipera walser, a new viper species from the north-western Italian Alps. Despite an overall morphological resemblance with Vipera berus, the new species is remarkably distinct genetically from both V. berus and other vipers occurring in western Europe and shows closer affinities to species occurring only in the Caucasus. Morphologically, the new species appear to be more similar to V. berus than to its closest relatives occurring in the Caucasus, but can be readily distinguished in most cases by a combination of meristic features as confirmed by discriminant analysis. The extant population shows a very low genetic variability measured with mitochondrial markers, suggesting that the taxon has suffered a serious population reduction/bottleneck in the past. The species is extremely range-restricted (less than 500 km2) and occurs only in two disjunct sites within the high rainfall valleys of the Alps north of Biella. This new species should be classified as globally ‘endangered’ due to its small and fragmented range, and an inferred population decline. The main near-future threats to the species are habitat changes associated with reduced grazing, along with persecution and collecting

    Shifting paradigms in two common abdominal surgical emergencies during the pandemic

    Get PDF
    During the pandemic there was a reduction in access to the hospital and surgical treatment of appendicitis and cholecystitis at a global level. Some strategies adopted during this challenging time could be applied even after the emergency has been controlled

    A case of Plasmodium malariae recurrence: Recrudescence or reinfection?

    Get PDF
    Background: Plasmodium malariae is the most neglected of the six human malaria species and it is still unknown which is the mechanism underlying the long latency of this Plasmodium. Case presentation: A case of PCR-confirmed P. malariae recurrence in a 52-year old Italian man was observed 5 months after a primary attack. In the interval between the two observed episodes of malaria the patient denied any further stay in endemic areas except for a visit to Libya, a country considered malaria-free. Genomic DNA of the P. malariae strain using five microsatellites (PM2, PM9, PM11, PM25, PM34) and the antigen marker of circumsporozoite (csp) was amplified and sequenced. Analysis of polymorphisms of the P. malariae csp central repeat region showed differences between the strains responsible of the first and second episode of malaria. A difference in the allele size was also observed for the sequence analysis of PM2 microsatellites. Conclusions: Plasmodium malariae is a challenging human malaria parasite and even with the use of molecular techniques the pathogenesis of recurrent episodes cannot be precisely explained

    Structural setting of a transpressive shear zone: Insights from geological mapping, quartz petrofabric and kinematic vorticity analysis in NE Sardinia (Italy)

    Get PDF
    The Posada-Asinara Line is a crustal-scale transpressive shear zone affecting the Variscan basement in northern Sardinia during Late Carboniferous time. We investigated a structural transect of the Posada-Asinara Line (Baronie) with the aid of geological mapping and structural analysis. N-verging F2 isoclinal folds with associated mylonitic foliation (S2) are the main deformation features developed during the Posada-Asinara Line activity (D2). The mineral assemblages and microstructures suggest that the Posada-Asinara Line was affected by a retrograde metamorphic path. This is also confirmed by quartz microstructures, where subgrain rotation recrystallization superimposes on grain boundary migration recrystallization. Crystallographic preferred orientation data, obtained using electron backscatter diffraction, allowed analysis of quartz slip systems and estimation of the deformation temperature, vorticity of flow and rheological parameters (flow stress and strain rate) during the Posada-Asinara Line activity. Quartz deformation temperatures of 400 ± 50 °C have been estimated along a transect perpendicular to the Posada-Asinara Line, in agreement with the syn-kinematic post-metamorphic peak mineral assemblages and the late microstructures of quartz. The D2 phase can be subdivided in two events: an early D2early phase, related to the metamorphic peak and low kinematic vorticity (pure shear dominated), and a late D2late phase characterized by a lower metamorphic grade and an increased kinematic vorticity (simple shear dominated). Palaeopiezometry and strain rate estimates associated with the D2late deformation event showed an intensity gradient increasing towards the core of the shear zone. The D2early deformation developed under peak temperature conditions, while the D2late event was active at shallower structural levels

    The earthquake cycle in the dry lower continental crust: insights from two deeply exhumed terranes (Musgrave Ranges, Australia and Lofoten, Norway)

    Get PDF
    This paper discusses the results of field-based geological investigations of exhumed rocks exposed in the Musgrave Ranges (Central Australia) and in Nusfjord (Lofoten, Norway) that preserve evidence for lower continental crustal earthquakes with focal depths of approximately 25–40 km. These studies have established that deformation of the dry lower continental crust is characterized by a cyclic interplay between viscous creep (mylonitization) and brittle, seismic slip associated with the formation of pseudotachylytes (a solidified melt produced during seismic slip along a fault in silicate rocks). Seismic slip triggers rheological weakening and a transition to viscous creep, which may be already active during the immediate post-seismic deformation along faults initially characterized by frictional melting and wall-rock damage. The cyclical interplay between seismic slip and viscous creep implies transient oscillations in stress and strain rate, which are preserved in the shear zone microstructure. In both localities, the spatial distribution of pseudotachylytes is consistent with a local (deep) source for the transient high stresses required to generate earthquakes in the lower crust. This deep source is the result of localized stress amplification in dry and strong materials generated at the contacts with ductile shear zones, producing multiple generations of pseudotachylyte over geological time. This implies that both the short- and the long-term rheological evolution of the dry lower crust typical of continental interiors is controlled by earthquake cycle deformation. This article is part of a discussion meeting issue ‘Understanding earthquakes using the geological record’.</jats:p

    Identification of Isoform 2 Acid-Sensing Ion Channel Inhibitors as Tool Compounds for Target Validation Studies in CNS

    Get PDF
    Acid-sensing ion channels (ASICs) are a family of ion channels permeable to cations and largely responsible for the onset of acid-evoked ion currents both in neurons and in different types of cancer cells, thus representing a potential target for drug discovery. Owing to the limited attention ASIC2 has received so far, an exploratory program was initiated to identify ASIC2 inhibitors using diminazene, a known pan-ASIC inhibitor, as a chemical starting point for structural elaboration. The performed exploration enabled the identification of a novel series of ASIC2 inhibitors. In particular, compound 2u is a brain penetrant ASIC2 inhibitor endowed with an optimal pharmacokinetic profile. This compound may represent a useful tool to validate in animal models in vivo the role of ASIC2 in different neurodegenerative central nervous system pathologies

    The Effects of Earthquakes and Fluids on the Metamorphism of the Lower Continental Crust

    Get PDF
    Rock rheology and density have first‐order effects on the lithosphere's response to plate tectonic forces at plate boundaries. Changes in these rock properties are controlled by metamorphic transformation processes that are critically dependent on the presence of fluids. At the onset of a continental collision, the lower crust is in most cases dry and strong. However, if exposed to internally produced or externally supplied fluids, the thickened crust will react and be converted into a mechanically weaker lithology by fluid‐driven metamorphic reactions. Fluid introduction is often associated with deep crustal earthquakes. Microstructural evidence, suggest that in strong highly stressed rocks, seismic slip may be initiated by brittle deformation and that wall‐rock damage caused by dynamic ruptures plays a very important role in allowing fluids to enter into contact with dry and highly reactive lower crustal rocks. The resulting metamorphism produces weaker rocks which subsequently deform by viscous creep. Volumes of weak rocks contained in a highly stressed environment of strong rocks may experience significant excursions toward higher pressure without any associated burial. Slow and highly localized creep processes in a velocity strengthening regime may produce mylonitic shear zones along faults initially characterized by earthquake‐generated frictional melting and wall rock damage. However, stress pulses from earthquakes in the shallower brittle regime may kick start new episodes of seismic slip at velocity weakening conditions. These processes indicate that the evolution of the lower crust during continental collisions is controlled by the transient interplay between brittle deformation, fluid‐rock interactions, and creep flow
    corecore