107 research outputs found

    The effect of cross-boundary management on the trajectory to commonness in biological invasions

    Get PDF
    The number of alien species introduced and undergoing range expansion in novel environments is steadily increasing, with important consequences for native ecosystems. The efficacy of management planning and decision making to limit such invasions can be improved by understanding how interventions will impact the population dynamics of recently introduced species. To do so, here we expand on a typological framework that enables the classification of populations over time into 10 categories of commonness, and apply it to a spatially discrete metapopulation with heterogeneous abundance across spatial units (patches). We use this framework to assess the effect of cross-boundary management on the capacity of a metapopulation with different demographic and dispersal characteristics, including time lags in population growth, to become common. We demonstrate this framework by simulating a simple theoretical metapopulation model capable of exploring a range of environments, species characteristics, and management actions. Management can vary in the efficacy of propagule interception between patches, and in the synchronisation of the implementation of these measures across patches (i.e. if management is implemented simultaneously across patches). Simulations show that poor interception efficacy that only modestly reduces the number of propagules entering a given spatial unit cannot be compensated for by strong management synchronisation between spatial units. Management synchronisation will nonetheless result in a reduction in rates of spread once a critical threshold of interception efficacy has been met. Finally, time lags in population growth that may result in delayed spread are an important aspect to be considered in management as they can amplify the efficacy of management. Our results demonstrate how a typological framework of categories of commonness can be used to provide practical insights for the management of biological invasions

    Does the self-similar species distribution model lead to unrealistic predictions?

    Get PDF
    J. Harte et al. demonstrated that the power law form of the species–area relationship may be derived from a bisected, self-similar landscape and a community-level probability rule. Harte’s self-similarity model has been widely applied in modeling species distributions. However, R. D. Maddux showed that this self-similarity model generates biologically unrealistic predictions. We resolve the Harte–Maddux debate by demonstrating that the problems identified by Maddux result from an assumption that the probability of occurrence of a species at one scale is independent of its probability of occurrence at the next. We refer to this as a ‘‘non-heritage assumption.’’ By altering this assumption to one in which each species in the community has an occupancy status that is partially inherited across scales (a scale-heritage assumption), the predictions of the self-similarity model are neither mathematically inconsistent nor biologically unrealistic. Harte’s self-similarity model remains an important framework for modeling species distributions. Our results illustrate the importance of considering patterns of species co-occurrence, and the way in which species occupancy patterns change with scale, when modeling species distributions.the DST-NRF Centre of Invasion Biology for financial support

    zetadiv:An R package for computing compositional change across multiple sites, assemblages or cases

    Get PDF
    AbstractSpatial variation in compositional diversity, or species turnover, is necessary for capturing the components of heterogeneity that constitute biodiversity. However, no incidence-based metric of pairwise species turnover can calculate all components of diversity partitioning. Zeta (ζ) diversity, the mean number of species shared by any given number of sites or assemblages, captures all diversity components produced by assemblage partitioning. zetadiv is an R package for analysing and measuring compositional change for occurrence data using zeta diversity. Four types of analyses are performed on bird composition data in Australia: (i) decline in zeta diversity; (ii) distance decay; (iii) multi-site generalised dissimilarity modelling; and (iv) hierarchical scaling. Some analyses, such as the zeta decline, are specific to zeta diversity, whereas others, such as distance decay, are commonly applied to beta diversity, and have been adapted using zeta diversity to differentiate the contribution of common and rare species to compositional change.HighlightsAn R package to analyse compositional change using zeta diversity is presented.Zeta diversity is the mean number of species shared by any number of assemblagesZeta diversity captures all diversity components produced by assemblage partitioningAnalyses relate zeta diversity to space, environment and spatial scaleAnalyses differentiate the contribution of rare and common species to biodiversity</jats:sec

    Using scale–area curves to quantify the distribution, abundance and range expansion potential of an invasive species

    Get PDF
    Aim: Invasive species distribution and abundance data are essential for management decisions on mitigating impacts but is seldom available. Here, we use scale–area curves to assess the distribution, abundance and consequent management implications of an invasive plant (Acacia longifolia) within selected occupancy grid cells, spread across regional ranges and representing the full national extent. We determine whether occupancy patterns are explained by climatic suitability or range structure and identify areas where A. longifolia can still be regarded as an important invasive based on contiguous occupancy. Location: South Africa including the Fynbos, Thicket, Savanna and Grassland biomes. Methods: The quarter degree occupancy of A. longifolia was used to select core, edge, and climatically unsuitable grid cells within different regions of the national range. Cells were surveyed across a linear resolution from 25 km to 2.5 m allowing the first multi-scales description of an invasive species’ space-filling properties. Patterns from grid cells in turn were viewed regionally to describe regional variation in spatial structure. Results: In regions with contiguous areas of favourable habitat, scale–area curves indicated greater occupancy in core than edge areas, whereas patterns were reversed when suitable areas were more fragmented. Also, at times climatically suitable areas were unoccupied, while unsuitable areas were occupied. Within cells, occupancy was well explained by the presence of fynbos vegetation types, while nationally, contiguous occupancy was almost exclusive to the Fynbos Biome. Main conclusions: Scale–area curves can advance the understanding of biological invasions and invasive plant distributions. Here, we detected potential areas of invasive concern, plus differences in abundance and distribution patterns, and associated correlates, at landscape and national scales. As there was no general relationship between range position or climatic suitability and A. longifolia’s spatial structure, we propose habitat suitability as an alternative explanation which, in turn, suggests limited range expansion potential.Centre of Excellence for Invasion Biolog

    A multi-site method to capture turnover in rare to common interactions in bipartite species networks

    Get PDF
    1. Ecological network structure is maintained by a generalist core of common species. However, rare species contribute substantially to both the species and functional diversity of networks. Capturing changes in species composition and interactions, measured as turnover, is central to understanding the contribution of rare and common species and their interactions. Due to a large contribution of rare interactions, the pairwise metrics used to quantify interaction turnover are, however, sensitive to compositional change in the interactions of, often rare, peripheral specialists rather than common generalists in the network. 2. Here we expand on pairwise interaction turnover using a multi-site metric that enables quantifying turnover in rare to common interactions (in terms of occurrence of interactions). The metric further separates this turnover into interaction turnover due to species turnover and interaction rewiring. 3. We demonstrate the application and value of this method using a host–parasitoid system sampled along gradients of environmental modification. 4. In the study system, both the type and amount of habitat needed to maintain interaction composition depended on the properties of the interactions considered, that is, from rare to common. The analyses further revealed the potential of host switching to prevent or delay species loss, and thereby buffer the system from perturbation. 5. Multi-site interaction turnover provides a comprehensive measure of network change that can, for example, detect ecological thresholds to habitat loss for rare to common interactions. Accurate description of turnover in common, in addition to rare, species and their interactions is particularly relevant for understanding how network structure and function can be maintained

    Road verges as invasion corridors? A spatial hierarchical test in an arid ecosystem

    Get PDF
    CITATION: Kalwij, J. M., Milton, S. J. & McGeoch, M. A. 2008. Road verges as invasion corridors? A spatial hierarchical test in an arid ecosystem. Landscape Ecology, 23: 439-451. doi:10.1007/s10980-008-9201-3The original publication is available at https://www.springer.com/journal/10980Disturbed habitats are often swiftly colonized by alien plant species. Human inhabited areas may act as sources from which such aliens disperse, while road verges have been suggested as corridors facilitating their dispersal. We therefore hypothesized that (i) houses and urban areas are propagule sources from which aliens disperse, and that (ii) road verges act as corridors for their dispersal. We sampled presence and cover of aliens in 20 plots (6 x 25 m) per road at 5-km intervals for four roads, nested within three localities around cities (n = 240). Plots consisted of three adjacent nested transects. Houses (n = 3349) were mapped within a 5-km radius from plots using topographical maps. Environmental processes as predictors of alien composition differed across spatial levels. At the broadest scale road-surface type, soil type, and competition from indigenous plants were the strongest predictors of alien composition. Within localities disturbance-related variables such as distance from dwellings and urban areas were associated with alien composition, but their effect differed between localities. Within roads, density and proximity of houses was related with higher alien species richness. Plot distance from urban areas, however, was not a significant predictor of alien richness or cover at any of the spatial levels, refuting the corridor hypothesis. Verges hosted but did not facilitate the spread of alien species. The scale dependence and multiplicity of mechanisms explaining alien plant communities found here highlight the importance of considering regional climatic gradients, landscape context and road-verge properties themselves when managing verges.DST-NRF Center of Excellence for Invasion Biology.Publisher’s versio

    Positive plant–plant interactions expand the upper distributional limits of some vascular plant species

    Get PDF
    Biotic interactions can shape species’ distributions through their impact on species’ realized niches, potentially constraining or expanding the range of conditions under which species occur. We examine whether fine-scale plant–plant interactions scale up to shape broad-scale species’ distributions, using Azorella selago, a widespread cushion plant that facilitates other species, and the rest of the vascular flora of sub-Antarctic Marion Island as a model system. We compared the upper elevational distributional limit of each species when growing on vs. away from A. selago to test how the interaction with this cushion plant species affects species’ ranges. Three out of 19 vascular plant species occurred at higher altitudes in the presence of A. selago than in the absence of A. selago: Acaena magellanica (+26 m higher), Colobanthus kerguelensis (+37 m higher), and Lycopodium saururus (+19 m higher). Therefore, A. selago’s fine-scale impacts scaled up to shape the distribution of a subset of the vascular flora of Marion Island. Plant–plant interactions thus have the potential to expand species upper distributional limits by increasing the niche space that a species can occupy, although the influence of these interactions may be strongly species-specific.The South African National Antarctic Program, the National Research Foundation (NRF) and the Swiss National Science Foundation.http://www.esajournals.org/loi/ecspam2020Plant Production and Soil Scienc

    Mechanistic reconciliation of community and invasion ecology

    Get PDF
    Community and invasion ecology have mostly grown independently. There is substantial overlap in the processes captured by different models in the two fields, and various frameworks have been developed to reduce this redundancy and synthesize information content. Despite broad recognition that community and invasion ecology are interconnected, a process-based framework synthesizing models across these two fields is lacking. Here we review 65 representative community and invasion models and propose a common framework articulated around six processes (dispersal, drift, abiotic interactions, within-guild interactions, cross-guild interactions, and genetic changes). The framework is designed to synthesize the content of the two fields, provide a general perspective on their development, and enable their comparison. The application of this framework and of a novel method based on network theory reveals some lack of coherence between the two fields, despite some historical similarities. Community ecology models are characterized by combinations of multiple processes, likely reflecting the search for an overarching theory to explain community assembly and structure, drawing predominantly on interaction processes, but also accounting largely for the other processes. In contrast, most models in invasion ecology invoke fewer processes and focus more on interactions between introduced species and their novel biotic and abiotic environment. The historical dominance of interaction processes and their independent developments in the two fields is also reflected in the lower level of coherence for models involving interactions, compared to models involving dispersal, drift, and genetic changes. It appears that community ecology, with a longer history than invasion ecology, has transitioned from the search for single explanations for patterns observed in nature to investigate how processes may interact mechanistically, thereby generating and testing hypotheses. Our framework paves the way for a similar transition in invasion ecology, to better capture the dynamics of multiple alien species introduced in complex communities. Reciprocally, applying insights from invasion to community ecology will help us understand and predict the future of ecological communities in the Anthropocene, in which human activities are weakening species' natural boundaries. Ultimately, the successful integration of the two fields could advance a predictive ecology that is urgently required in a rapidly changing world

    Zoo Basel Newsletter. 2013, Juli

    Get PDF
    Climate change alters the frequency and severity of extreme events, such as drought. Such events will be increasingly important in shaping communities as climate change intensifies. The ability of species to withstand extreme events (resistance) and to recover once adverse conditions abate (resilience) will determine their persistence. We estimated the resistance and resilience of bird species during and after a 13-year drought (the \u27Big Dry\u27) in floodplain forests in south-eastern Australia. We conducted bird surveys at the beginning and end of the Big Dry, and after the abrupt end to the drought (the \u27Big Wet\u27), to evaluate species-specific changes in reporting rates among the three periods. We assessed changes in bird-breeding activity before and after the Big Wet to estimate demographic resilience based on breeding. Between the start and the end of the Big Dry (1998 vs. 2009), 37 of 67 species declined substantially. Of those, only two had increased reporting rates after the Big Wet (2009 vs. 2013) that were equal to or larger than their declines, while three partially recovered. All other declining species showed low resilience: 25 showed no change in reporting rates and seven declined further. The number of breeding species and total breeding activity of all species declined after the Big Wet, and there was no change in the number of young produced. The Big Dry caused widespread declines in the floodplain avifauna. Despite the drought being broken by 2&nbsp;years of well-above-average rainfall and subsequent near-average rainfall, most species showed low resilience and there was little indication that overall breeding had increased. The effects of drought appeared to be pervasive for much of the floodplain avifauna, regardless of species traits (species body mass, fecundity, mobility or diet). Ecosystems such as these are likely to require active management and restoration, including reinstatement of natural flooding regimes, to improve ecological condition, to enhance resistance and resilience to extreme climate events
    • …
    corecore