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Highlights 18 

• An R package to analyse compositional change using zeta diversity is 19 

presented. 20 

• Zeta diversity is the mean number of species shared by any number of 21 

assemblages 22 

• Zeta diversity captures all diversity components produced by assemblage 23 

partitioning 24 

• Analyses relate zeta diversity to space, environment and spatial scale 25 

• Analyses differentiate the contribution of rare and common species to 26 

biodiversity 27 

 28 
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Abstract 30 

 31 

Spatial variation in compositional diversity, or species turnover, is necessary for 32 

capturing the components of heterogeneity that constitute biodiversity. However, no 33 

incidence-based metric of pairwise species turnover can calculate all components of 34 

diversity partitioning. Zeta (ζ) diversity, the mean number of species shared by any 35 

given number of sites or assemblages, captures all diversity components produced by 36 

assemblage partitioning. zetadiv is an R package for analysing and measuring 37 

compositional change for occurrence data using zeta diversity. Four types of analyses 38 

are performed on bird composition data in Australia: (i) decline in zeta diversity; (ii) 39 

distance decay; (iii) multi-site generalised dissimilarity modelling; and (iv) 40 

hierarchical scaling. Some analyses, such as the zeta decline, are specific to zeta 41 

diversity, whereas others, such as distance decay, are commonly applied to beta 42 

diversity, and have been adapted using zeta diversity to differentiate the contribution 43 

of common and rare species to compositional change. 44 

 45 

Keywords: species turnover, alpha diversity, beta diversity, zeta diversity, occurrence 46 

data. 47 

 48 
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1. Introduction 50 

 51 

1.1. Species turnover in practice 52 

Spatial variation in compositional diversity, or species turnover, is one of the key 53 

properties for quantifying the components of heterogeneity that constitute 54 

biodiversity, along with total richness and measures of uniqueness, such as endemism 55 

and phylogenetic distinctiveness (Magurran and McGill, 2011). Species turnover can 56 

show a wide range of responses to environmental changes, and good conservation 57 

practice requires the understanding derived from its effective measurement and 58 

description for both species that are common and rare (McGeoch and Latombe, 2016; 59 

Socolar et al., 2016). 60 

 61 

Despite the role of compositional dissimilarity (or similarity) in understanding 62 

biodiversity, no single measure previously connected the range of assemblage patterns 63 

constructed from species presence-absence data (Hui and McGeoch, 2014). Species 64 

turnover is traditionally measured by beta diversity, which quantifies compositional 65 

change between pairs of individual assemblages (Chao et al., 2012; Jost, 2007). To 66 

compare three or more assemblages, the mean of the pairwise similarities is often 67 

used (Jost et al., 2011). However, such incidence-based metrics of pairwise 68 

compositional change emphasize the differences in rare species composition between 69 

assemblages, and do not capture the characteristics of community structures caused 70 

by common species shared by many assemblages. Although multiple-site metrics 71 

have also been developed to quantify the heterogeneity in assemblage composition 72 

(Baselga, 2013; Diserud and Ødegaard, 2007; Ricotta and Pavoine, 2015), these 73 
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measures rely on averaging non-independent pairwise values and are difficult to 74 

interpret.  75 

 76 

1.2. Necessity of zeta diversity 77 

Zeta (ζ) diversity, the mean number of species shared by any given number of sites or 78 

assemblages, was proposed as a metric to capture all diversity components produced 79 

by assemblage partitioning (Hui and McGeoch, 2014). Computing zeta diversity for 80 

combinations of sites from 2 to n sites (the orders of zeta), where n is the total number 81 

of sites, along with ζ1, the average number of species per site (i.e. alpha diversity), is 82 

necessary to obtain a mathematically comprehensive description of species 83 

assemblages, and cannot be achieved by only considering alpha and beta diversity. 84 

Let us consider a simple example with three sites containing 22 species each (i.e. ζ1 or 85 

α). Let us assume that each site shares exactly 10 species with any of the other two 86 

sites (i.e. ζ2 or β) (Figure 1). There are then multiple ways to partition species 87 

diversity between the three sites. At one extreme, there may be no species shared by 88 

the three sites simultaneously (ζ3 = 0). At the other extreme, the 10 species shared by 89 

any two sites may actually be extremely common and be shared by all three sites (ζ3 = 90 

10) (Figure 1). These different partitions of species diversity therefore correspond to 91 

very different species assemblages, whereas they have the same alpha and beta 92 

diversity values. Many other examples are possible, where alternative diversity 93 

partitions exist even with the same alpha, beta and gamma diversity values. 94 

 95 

As a consequence of the comprehensive description provided by zeta diversity, as 96 

outlined by Hui and McGeoch (2014), zeta diversity enables the computation of a 97 

broad range of existing diversity metrics, and the quantification of continuous change 98 
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in biodiversity over landscapes. For example, species accumulation curves, endemic-99 

effort relationships and occupancy-frequency distributions can all be derived from 100 

zeta diversity. Importantly, from examining an extensive dataset of 291 communities, 101 

Hui and McGeoch (2014) identified two most common parametric forms of zeta 102 

diversity decline with the increase in the number of given sites – negative exponential 103 

and power law, which together account for 80% of examined communities and may 104 

differentiate stochastic from deterministic assembly processes, respectively (see for 105 

example Roura‐Pascual et al., 2016). By providing a common currency for measuring 106 

biodiversity from occurrence data, zeta diversity provides an avenue for 107 

understanding the mechanistic basis of spatial patterns in diversity. This includes 108 

examining if environmental change affects rare and common species differently, or 109 

testing hypotheses about the relative importance of deterministic versus stochastic 110 

assembly processes in generating patterns of biodiversity. 111 

 112 

Because it links different community patterns together, zeta diversity can be used for 113 

identifying community assembly processes. The identification of processes generating 114 

community assemblages usually relies on community patterns (e.g. Dornelas et al., 115 

2006; Latombe et al., 2015). Since multiple assembly processes can generate the same 116 

community pattern, multiple patterns are needed to provide a more comprehensive 117 

description of the community and discriminate between processes (Grimm et al., 118 

2005; Grimm and Railsback, 2012). Using multiple, different patterns can nonetheless 119 

generate bias due to possible redundancy between their information content (Latombe 120 

et al., 2011). Since multiple incidence-based patterns can be derived from zeta 121 

diversity, zeta diversity offers a powerful basis for discriminating between community 122 

assembly processes while avoiding issues of pattern redundancy. Following this logic, 123 
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zeta diversity has been used to compare and provide insights on the nature of 124 

compositional change over space and time using 10 datasets encompassing a whole 125 

range of levels of biological organisation at various spatial and temporal scales, 126 

including birds, insects, plants, microbes, and crop pests, but also intracellular 127 

processes in humans, showing the potential of zeta diversity for describing and 128 

unveiling the functioning of systems beyond classical site-by-species structure 129 

(McGeoch et al., 2017). 130 

 131 

Importantly, zeta diversity enables the contribution of rare and common species to 132 

compositional change to be disentangled. On average, common (widespread) species 133 

are more likely to be present in any site and to be shared by any two sites than rare 134 

species. The variation in the number of species shared by different pairs of sites are 135 

therefore mostly driven by rare species, and so are analyses based only on alpha and 136 

beta diversity. By contrast, since rare species cannot, by definition, be shared by many 137 

sites, differences in zeta values for high orders of zeta is only driven by common 138 

species. Although conservation actions are mostly orientated towards rare species, 139 

common species are getting more attention (McGeoch and Latombe, 2016) as their 140 

importance for ecosystem functions is increasingly recognised (Gaston, 2010). 141 

Understanding the contribution of common and rare species to species turnover is 142 

therefore necessary. In practice, defining the distinction between rare and common 143 

species is subjective and must be done for each species individually. By contrast, zeta 144 

diversity calculates the contribution of species from rare to common as a continuum, 145 

avoiding multiple and largely subjective decisions.  146 

 147 

1.3. Aims and novelty of the zetadiv R package 148 
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Here we introduce the zetadiv package for R (R CoreTeam, 2013). The zetadiv 149 

package (available on CRAN; https://CRAN.R-project.org/package=zetadiv) was 150 

created to measure and analyse compositional change for occurrence data using zeta 151 

diversity. The functions of the zetadiv package can be categorised into four kinds of 152 

analyses described in detail in the following (Appendix A, Table A1): (i) the analysis 153 

of zeta diversity decline explores how the number of species shared by multiple 154 

assemblages decreases with increasing number of assemblages within combinations, 155 

and what information is contained in the form of this decline; (ii) the analysis of the 156 

distance decay of zeta diversity illustrates how zeta diversity for different orders 157 

varies with distance between sites; (iii) Multi-Site Generalised Dissimilarity 158 

Modelling (MS-GDM, an adaptation of Generalised Dissimilarity Modelling; Ferrier 159 

et al., 2007), computes the contribution of different environmental variables and 160 

distance to zeta diversity for different orders; (iv) the analysis of the hierarchical 161 

scaling of zeta diversity unravels how zeta diversity varies with grain.  162 

 163 

Analysis of the decline in zeta diversity uses an incremental increase in the numbers 164 

of assemblages included in the combinations. It is therefore an application unique to 165 

zeta diversity as it combines alpha and beta (ζ1 and ζ2) with higher orders of zeta in a 166 

single analysis, to provide a comprehensive description of species turnover. By 167 

contrast, as we detail below, the other three kinds of analyses have in the past been 168 

applied using beta diversity, and other R packages exist to compute such analyses. 169 

The vegan package (Oksanen et al., 2018) enables the computation of a wide range of 170 

beta diversity measures and of the hierarchical scaling of beta diversity with sampling 171 

grain. The simba package (Jurasinski and Retzer, 2012) enables the comparison of 172 

different slopes of the distance decay of beta similarity. Generalised Dissimilarity 173 
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Modelling can be performed on beta diversity using the gdm package (Manion et al., 174 

n.d.). As we illustrate in the examples below, the zetadiv package extends such 175 

analyses and enables their application to zeta diversity for selected numbers of 176 

assemblages beyond pairwise beta diversity (n ≥ 2; see the full R code in Appendix B 177 

for fully reproducible examples and figures). 178 

 179 

2. Biodiversity data 180 

 181 

All the functions of zetadiv require at most four types of data (except for the functions 182 

that use the outputs of other functions, such as plotting functions). (i) Occurrence 183 

data, in the form of sites-by-species (rows-by-columns) data frames, are required by 184 

all functions. (ii) When spatial information is needed, a data frame with the projected 185 

or geographical coordinates of the sites or assemblages can be used. (iii) Instead of 186 

the spatial coordinates, a distance matrix between sites, independently computed, can 187 

be provided, when measures of connectivity other than Euclidian or orthodromic (i.e. 188 

distance between two points on the globe defined by their geographic coordinates) 189 

distance are required (e.g. Manhattan distance or distance accounting for the path of 190 

least resistance). (iv) A site-by-variable data frame representing the environmental 191 

variables of the sites or assemblages can be provided for MS-GDM analysis.  192 

 193 

Two datasets, describing two different ecosystems, and complying with these 194 

requirements are included in the package to demonstrate the functions (Appendix A, 195 

Table A2). The first dataset is an inventory of resident, terrestrial bird survey data 196 

(presence-only) from the BirdLife Australia Atlas of Australian Birds (1998-2013) 197 

and covering South-East Australia (Barrett et al., 2003). The species occurrences are 198 
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complemented by maps of environmental variables for the same region, including 199 

proportion of natural environments, irrigated agriculture and plantations, as well as 200 

human density, water features (www.abs.gov.au), temperature and precipitation 201 

(www.worldclim.org; Fick and Hijmans, 2017), and elevation (www.gebco.net). The 202 

bird and environmental data were arranged into two continuous grids at two different 203 

spatial scales (same spatial extent but a fine grain [25 × 25 km grid cells] and a coarse 204 

grain [100 × 100 km grid cells], therefore producing two scales. Only cells whose 205 

richness was within 10% of estimated asymptotic richness are included in the datasets 206 

(Latombe et al., 2017), to limit the occurrence of false absence. The second dataset is 207 

an inventory of the presence and absence of springtails and mite species in 12 plots (4 208 

transects and 3 altitudes) on Marion Island, along with the altitude of the sites and the 209 

side of the island where they are located (McGeoch et al., 2008; Nyakatya and 210 

McGeoch, 2008).   211 

 212 

In the following, we use the fine-grain bird data to illustrate the four different kinds of 213 

analyses. The fine-grain data, together with the seven environmental variables, can be 214 

loaded using the following commands: 215 

 216 

data(bird.spec.fine) 217 

xy <- bird.spec.fine[,1:2] # geographic coordinates of sites 218 

data.spec <- bird.spec.fine[,3:192] # site-by-species matrix 219 

data(bird.env.fine) 220 

data.env <- bird.env.fine[,3:9] # site-by-environment matrix 221 

 222 

3. Zeta diversity and zeta decline 223 
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 224 

3.1. Description 225 

The functions Zeta.order.ex and Zeta.order.mc compute ζi, the number of 226 

species shared by any i assemblages (the order of zeta) in two alternative ways. 227 

Zeta.order.ex computes the expected value of zeta diversity for order i. Let Pj be 228 

the probability of species j with occupancy Oj occurring in i given sites out of the N 229 

surveyed sites. The expected value can be calculated as the sum of the probability 230 

over all species S:  231 

 232 

𝐸𝐸(𝜁𝜁𝑖𝑖) = ∑ 𝐸𝐸[𝑃𝑃𝑗𝑗]𝑆𝑆
𝑗𝑗 = ∑

C 𝑂𝑂𝑗𝑗
𝑖𝑖

C 𝑁𝑁
𝑖𝑖

𝑆𝑆
𝑗𝑗     (1) 233 

 234 

where 𝐶𝐶𝑖𝑖𝑁𝑁and 𝐶𝐶𝑖𝑖
𝑂𝑂𝑗𝑗are binomial coefficients giving the total number of possible 235 

combinations of i sites out of a total of N or Oj, respectively. The variance is then 236 

given by the summation of the covariance of the probability: 237 

 238 

𝑣𝑣𝑣𝑣𝑣𝑣(𝜁𝜁𝑖𝑖) = C𝑖𝑖
 𝑁𝑁

C𝑖𝑖
 𝑁𝑁
−1

× ∑ ∑ �𝐸𝐸�𝑃𝑃𝑗𝑗𝑃𝑃𝑘𝑘� − 𝐸𝐸�𝑃𝑃𝑗𝑗� ∗ 𝐸𝐸[𝑃𝑃𝑘𝑘]�𝑆𝑆
𝑘𝑘

𝑆𝑆
𝑗𝑗    (2) 239 

where  240 

𝐸𝐸[𝑃𝑃𝑗𝑗𝑃𝑃𝑘𝑘] =
C 𝑂𝑂𝑗𝑗𝑗𝑗

𝑖𝑖
C 𝑁𝑁
𝑖𝑖

    (3) 241 

and Ojk is the number of sites in which both species j and k are present (also referred 242 

to as joint occupancy; Hui, 2009). The number Oij corresponds to the element ij of the 243 

S×S dimensional matrix MTM, where M is the site(row)-by-species(column) matrix 244 

of occurrence and T matrix transposition. Note that the variance in Equation 2 is 245 

corrected for bias using Bessel’s correction (Kenney and Keeping, 1951), which 246 
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corresponds to the default in Zeta.order.ex. This is suitable if the assemblages 247 

represent a sample of the total study system. In case of a continuous grid sample or in 248 

lab experiments, for which the incidence data can be exhaustive, the exact variance 249 

can also be computed by setting sd.correct = FALSE in the function parameters. 250 

 251 

By contrast, Zeta.order.mc (for “Monte Carlo sampling”) computes zeta diversity 252 

by averaging the number of shared species for i assemblages over all possible 253 

combinations of the i assemblages from N total assemblages. The shared species for i 254 

assemblages is obtained using the dot product of species (1/0) vectors. When all 255 

possible combinations are used, Zeta.order.mc and Zeta.order.ex are 256 

equivalent. For large N and intermediate i, the number of combinations for i 257 

assemblages, 𝐶𝐶𝑖𝑖𝑁𝑁, becomes very high, and the computational complexity becomes 258 

intractable. The user must therefore provide a value sam, representing the number of 259 

samples over which ζi should be computed. If sam > 𝐶𝐶𝑖𝑖𝑁𝑁, ζi is computed exactly, but 260 

otherwise approximated over sam random combinations. The impact of sam on the 261 

computation of ζi can be assessed using the function Zeta.sam.sensitivity 262 

(Appendix A, Figure A1).  263 

 264 

In contrary to Zeta.order.ex, for each combination j of i assemblages, 265 

Zeta.order.mc allows for the computation of a normalised version zeta (i.e. ζij/Sj), 266 

where Sj is either (i) the total number of species over the assemblages in the specific 267 

combination j (i.e. the gamma diversity of the combination j, therefore equivalent to 268 

the Jaccard similarity index), (ii) the average number of species per assemblage in the 269 

specific combination j (i.e. the alpha diversity of the combination j, therefore 270 

equivalent to the Sørensen similarity index), or (iii) the minimum number of species 271 
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over the assemblages in the specific combination j (therefore equivalent to the 272 

Simpson similarity index). Normalised zeta may be suitable when richness varies 273 

widely across regions or systems being compared. 274 

 275 

The formulas described above for Zeta.order.ex and Zeta.order.mc 276 

correspond to combinations of any i assemblages over all assemblages. This sub-277 

sampling scheme may nonetheless not be the most appropriate for some data. For 278 

example, the turnover of assemblages arranged in a linear fashion along a gradient 279 

(e.g. Rivadeneira et al., 2002; Whittaker, 1956) may be better analysed by combining 280 

assemblages close to each other, and using a specific assemblage as a reference 281 

(Whittaker, 1967). Several sub-sampling schemes are possible in Zeta.order.mc. 282 

Assemblages can be combined using a nearest-neighbour approach to explore patterns 283 

of local turnover. When a nearest-neighbour approach is used, the combinations can 284 

be non-directional, or directional, moving away from a fixed-point origin or a fixed-285 

edge origin (for example for ecological systems being invaded from a specific 286 

direction) (McGeoch et al., 2017). A focal assemblage plus the closest (i-1) 287 

assemblages are then be used for calculating ζi. The focal assemblage can be the 288 

fixed-point origin or any other assemblage. There are therefore 4 possible sub-289 

sampling schemes, whose pertinence depends on the specific study (see McGeoch et 290 

al., 2017 for additional details and a comparison of the zeta declines using different 291 

sub-sampling schemes for the well-known Smokey Mountain dataset of Whittaker 292 

1956, 1967): the ALL scheme using combinations of any assemblages (the default 293 

scheme), the non-directional nearest neighbour (NON) scheme, in which each site is 294 

associated to its i-1 nearest neighbours to compute ζi, the directional nearest 295 

neighbour using a specific assemblage or an edge as a reference (DIR), and each site 296 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 17, 2018. ; https://doi.org/10.1101/324897doi: bioRxiv preprint 

https://doi.org/10.1101/324897


14 
 

is associated to its i-1 nearest neighbours in the opposite direction to the reference to 297 

compute ζi, and the fixed-point origin (FPO) scheme, in which a specific assemblage 298 

is always combined with its i-1 nearest neighbours to compute ζi (i.e. similar to NON 299 

but using one specific assemblage only). When the FPO is located outside of the study 300 

area, it corresponds to a fixed-edge origin (FEO) scheme, in which assemblages close 301 

to the edge are combined with their nearest neighbours. 302 

 303 

The functions Zeta.decline.ex and Zeta.decline.mc then compute the values 304 

of ζi for a range of orders i (Figure 2; Appendix A, Figure A2). As the number of 305 

assemblages increases, the number of shared species amongst assemblages 306 

necessarily decreases, hence a decline in zeta. These functions also compute the ratio 307 

ζi/ ζi-1, which is called the retention rate and quantifies the proportion of species that 308 

are retained in additional samples. The retention rate is especially useful to reveal 309 

features of the zeta decline that are indistinguishable from the observation of the 310 

decline itself, allowing for highlighting differences in the structure of compositional 311 

change between datasets or study areas, and for detecting spatial structure in gradients 312 

of vegetation when using different sub-sampling schemes (McGeoch et al., 2017).  313 

 314 

Finally, an exponential and a power law parametric form are fitted to the zeta decline. 315 

These are the two most common parametric forms observed in nature (Hui and 316 

McGeoch, 2014). The parametric form of the decline may signal the relative roles of 317 

stochastic or deterministic assembly processes, although it may also be affected by 318 

assemblage richness and sample size. The function Plot.zeta plots the outputs of 319 

Zeta.decline.ex and Zeta.decline.mc. 320 

 321 
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Computing zeta diversity for different orders has been used, for example to validate 322 

the outputs of self-organising maps used for pest profile analyses, which group 323 

together areas with similar profiles of species composition (Roigé et al., 2017). 324 

Pairwise comparisons of sites enables the identification of clusters with few shared 325 

species and therefore high uncertainty. Using orders of zeta beyond pairwise 326 

comparisons enables to further refine the uncertainty level of the remaining clusters 327 

by distinguishing between clusters with low (i.e. superficial) and high similarity for 328 

higher orders of zeta. 329 

 330 

3.2. Example 331 

The zeta decline of bird species over South-East Australia was computed from orders 332 

1 to 50 using the ALL and the NON subsampling schemes across grid cells and 333 

plotted using the following commands (the seed is set to 1 for reproducibility): 334 

 335 

set.seed(1) 336 

dev.new (width = 12, height = 4) 337 

zeta.decline.fine.ex <- Zeta.decline.ex(data.spec, orders = 338 

1:50) 339 

dev.new(width = 12, height = 4) 340 

zeta.decline.fine.NON <- Zeta.decline.mc(data.spec, xy, orders 341 

= 1:50, NON = TRUE, DIR = FALSE, FPO = NULL) 342 

 343 

The NON = TRUE parameter indicates that the NON scheme must be used. If the FPO 344 

parameter contains coordinates, they take precedence over the NON parameter. If DIR 345 
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= FALSE, the FPO (or FEO) scheme applies. The DIR scheme requires both DIR = 346 

TRUE and a set of coordinates in FPO. 347 

 348 

Comparing outputs of the ALL and the NON subsampling schemes provides 349 

information on the effect of the spatial scale on species turnover. When all cells are 350 

combined, the zeta decline better fits a power law than an exponential parametric 351 

form (Figure 2a; ΔAIC = 270.61), therefore suggesting that species are distributed in 352 

a deterministic fashion across South-East Australia. The retention rate (ζi / ζi-1) 353 

increases steadily, but starts levelling off after 20 assemblages, indicating that, below 354 

that value, few species are retained as new assemblages are considered, but many 355 

more are, proportionally, beyond 20 assemblages. The asymptote therefore provides 356 

an indication of the scale at which species can be considered to be rare and common. 357 

 358 

When the cells are combined using the NON scheme, the retention rate is higher than 359 

for the ALL scheme for low orders of zeta, indicating that the zeta values decline at a 360 

lower rate. This suggests some level of spatial aggregation of species, with closer 361 

cells sharing more rare species (and common species to a lesser extent), as can be 362 

expected. The zeta decline computed with the NON scheme is also better fitted by a 363 

power law rather than exponential parametric form. 364 

 365 

4. Distance decay of zeta 366 

 367 

4.1. Description 368 

The distance decay of similarity is a well-known community descriptor (Morlon et al., 369 

2008; Nekola and White, 1999), i.e. as distance between assemblages increases, two 370 
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assemblages are expected to become less similar and to share fewer species. Typical 371 

research questions that can be addressed by considering the distance decay of zeta-372 

diversity include: (i) the explicit distances over which species assemblages differ; (ii) 373 

how do the decay patterns of rare and common species differ, providing insight on the 374 

spatial properties of their distributions.  375 

 376 

The function Zeta.ddecay generalizes distance decay and enables its computation 377 

for any number of assemblages. For many sites, it uses the same Monte Carlo 378 

sampling as Zeta.order.mc, and can therefore be applied to normalised zeta. For 379 

more than two assemblages, distances between assemblages (either computed from 380 

sites coordinates or from a custom distance matrix) must be combined for each 381 

combination of sites, for example as the mean distance across n sites. The function is 382 

flexible and enables users to define how they should be combined, using a built-in or 383 

a custom function (see Latombe et al., 2017 for a discussion on the impacts of using 384 

different functions). Zeta.ddecay regresses ζi over this measure of distance using 385 

three types of regression: (i) a generalized linear model, the default being linear 386 

regression, allowing constraints on the signs of the coefficients (ii) a generalized 387 

additive model (GAM), to allow for non-linearities and periodicities in the distance 388 

decay (Soininen et al., 2007) and (iii) a general additive model under shape constraint, 389 

or “shape-constrained additive model” (SCAM; Pya and Wood, 2015), set by default 390 

to a monotonically declining GAM. Additional options enable the definition of 391 

thresholds for distance which may be desirable, for example, for discarding 392 

uninformative long tails that would artificially make the slope of the distance decay in 393 

linear models more shallow. It is also possible to specify how to transform spatial 394 

distance according to any function. The function Zeta.ddecays calls 395 
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Zeta.ddecay and computes the slope of the distance decay using linear models for 396 

different orders of zeta, and plots changes in slope as the order increases (Appendix 397 

A, Figure A3). 398 

 399 

The distance decay of zeta can also be applied to time series of species composition, 400 

using time instead of distance, therefore computing a time decay of zeta diversity. 401 

Time decay of zeta diversity has been used to show differences in the response of bird 402 

communities of two different river basins to drought (McGeoch et al., 2017). 403 

 404 

4.2. Example 405 

The distance decays of ζ2, ζ3, ζ5, and ζ10 were assessed using a linear regression and a 406 

GAM (set with reg.type, whose default is linear regression) using the following 407 

commands (for order = 2, order = 3, order = 5 and order = 10): 408 

 409 

set.seed(1) 410 

dev.new() 411 

zeta.ddecay.lm.fine <- Zeta.ddecay(xy, data.spec, order = 2, 412 

confint.level = 0.95) # the default regression is a linear 413 

model 414 

set.seed(1) 415 

dev.new() 416 

zeta.ddecay.gam.fine <- Zeta.ddecay(xy, data.spec, order = 2, 417 

reg.type="gam") # a generalised additive model is used 418 

insteadn of the default linear model 419 

 420 
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Both methods show a clear distance decay, even for ζ10, although it becomes less 421 

pronounced for high orders of zeta (Figure 3). The distance decay is more pronounced 422 

for ζ3 and ζ5 than for ζ2 (p-values = 0.001, 0.003; the significance was computed using 423 

the diffslope2 function from the simba R package, Jurasinski 2012; see R code in 424 

Appendix B for details) suggesting that within the extent of this study, rare species are 425 

dispersed relative to the space-filling properties of the species with higher occurrence 426 

levels. The GAM shows that the distance decay is not linear for ζ2 and ζ3. In 427 

particular, ζ3 allows for the detection of a threshold at ~800 km after which the effect 428 

of distance on compositional change mostly disappears (Figure 3). 429 

 430 

5. Multi-site generalised dissimilarity modelling 431 

 432 

5.1. Description 433 

Multi-Site Generalised Dissimilarity Modelling (MS-GDM; Latombe et al., 2017) is 434 

inspired by Generalized Dissimilarity Modelling (GDM; Ferrier et al., 2007), a 435 

statistical technique for analysing and predicting changes in beta diversity from 436 

pairwise differences in environmental variables and spatial distance between sites 437 

using regression techniques. Following the same principles, the function 438 

Zeta.msgdm enables the regression of rescaled (ζi / ζ1) or normalised ζi values 439 

(Jaccard, Sørensen or Simpson versions) over environmental differences and distance 440 

between assemblages. Since ζi is the number of species in common across i sites, we 441 

call it Multi-site Generalised Dissimilarity Modelling (see Latombe et al., 2017 for 442 

details). MS-GDM enables the inclusion of both continuous and categorical 443 

environmental variables as predictors. In the latter case, the environmental difference 444 

between i sites is computed as the number of different values across the i sites (and 445 
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the maximum value is therefore i; Latombe et al. in review). MS-GDM also enables 446 

the inclusion of the zeta values of the same order from another group of species as 447 

predictors, when both groups are expected to be related to each other (such as native 448 

and alien species; Latombe et al. in review). Typical research questions that can be 449 

addressed by MS-GDM include: (i) whether variation in the number of shared species 450 

(compositional similarity) between assemblages is explained predominantly by either 451 

environmental differences or distance; (ii) whether the relative importance of different 452 

environmental variables and distance differs for rare and common species (by 453 

comparing low and high orders of zeta)  454 

 455 

Four different types of regression techniques have been implemented: generalized 456 

linear models (GLM), with possible constraint on the sign of the coefficients, GAMs, 457 

SCAMs, and, following Ferrier et al. (2007), a combination of I-spline and GLM with 458 

constraints on the signs of the coefficients (see Latombe et al., 2017 for details). I-459 

splines (Ramsay, 1988) are a kind of monotone spline functions that are used to 460 

transform the data before applying a generalized linear model with non-negative 461 

coefficients. This transformation accommodates non-linear relationships between zeta 462 

diversity and changes in environmental variables, but also the fact that the impact of 463 

change in an environmental variable may depend on the values of this variable (for 464 

example a change of temperature near the limit of the species thermal tolerance may 465 

have more impact on species occurrence than the same change in the middle of the 466 

range of its thermal tolerance). 467 

 468 

The order of the I-splines and the number of knots (for the GAM, SCAM and I-469 

splines) can be set by the user. The number of knots must be chosen carefully, as too 470 
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many knots may result in overfitting (Manion, 2009). Moreover, as for any regression 471 

analysis, variables suffering from multicollinearity (e.g. VIF>10) should be removed 472 

(Dormann et al., 2013). As for the distance decay, for many sites, Zeta.msgdm uses 473 

the same Monte Carlo sampling as Zeta.order.mc.  When i > 2, the environmental 474 

differences and distances between assemblages must also be combined for each 475 

combination, for example using the mean of differences. 476 

 477 

A function Ispline to transform data using I-splines is also included in the package. 478 

Using the output from Zeta.msgdm, the function Predict.msgdm predicts the zeta 479 

values for new environmental data. The function Plot.spline is used to plot the I-480 

splines for the different variables. Finally, the function Zeta.varpart computes 481 

variation partitioning (Legendre, 2008) for a model computed with Zeta.msgdm, to 482 

determine which part of ζi is explained by the environmental or the distance variables. 483 

Zeta.varpart uses the adjusted R2, to account for the use of several environmental 484 

variables, whereas distance is a single variable. Note that the non-adjusted R2 is 485 

computed as 1 – (residual sum of squares) / (total sum of squares), and makes sense 486 

only for linear regression, for which the residual sum of squares is normally 487 

distributed. Results of variation partitioning for the other regression techniques should 488 

therefore be interpreted with caution. In variation partitioning, some partitions may be 489 

negative (Legendre and Legendre, 2012). The function Pie.neg therefore considers 490 

negative values as 0 to plot the results as a pie diagram. 491 

 492 

5.2. Example 493 

Similar to Latombe et al. (2017), MS-GDM was computed for the Sørensen ζ2 and ζ10 494 

using I-splines (and a binomial family with a log link, which requires a negative 495 
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intercept, as shown by cons.inter = -1), as well as variation partitioning for 496 

linear regressions (contrary to MS-GDM, no constraint was applied on the sign of the 497 

regression by setting method.glm = "glm.fit2" so that the residuals are 498 

normally distributed, as explained above), using the following commands (for order 499 

= 2 and order = 10): 500 

 501 

set.seed(1) 502 

zeta.ispline.fine2 <- 503 

Zeta.msgdm(data.spec,data.env,xy,order=2,sam=1000,reg.type="is504 

pline",normalize="Sorensen",family=binomial(link="log"),cons.i505 

nter = -1) 506 

Plot.ispline(zeta.ispline.fine2, data.env, distance = TRUE, 507 

legend = FALSE) 508 

set.seed(1) 509 

zeta.varpart.fine2 <- 510 

Zeta.varpart(xy=xy,data.spec=data.spec,data.env=data.env,order511 

=2,sam=1000,method.glm = "glm.fit2") 512 

dev.new() 513 

pie.neg(zeta.varpart.fine2[4:7,1], density = c(4, 0, 8, -1), 514 

angle = c(90, 0, 0, 0), labels = 515 

c("distance","undistinguishable","environment","unexplained"), 516 

radius = 0.9)  517 

 518 

In these data, precipitation is the main predictor of bird compositional change for ζ2, 519 

especially for dry environments (as shown by the steep slope of the I-spline for low 520 
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precipitations), followed by distance (Figure 4). For ζ10, which, contrary to ζ2, 521 

excludes the contribution of the rarest species to turnover, the importance of 522 

temperature and area per person increases. The decrease in the relative importance of 523 

precipitation may be due to the fact that common species are more likely to find 524 

refugia in areas containing water bodies during dry periods, whereas rare species may 525 

be more vulnerable to rainfall heterogeneity (discussed in further detail in Latombe et 526 

al., 2017). Results are slightly different from Latombe et al. (2017) because the 527 

Sorensen version of zeta was used here instead of just rescaling the zeta values by the 528 

overall ζ1, and different indices consider the influence of richness on turnover 529 

differently (Baselga, 2010). 530 

 531 

Variation partitioning on ζ2 and ζ10 using I-splines and simple linear regressions 532 

shows that variation partitioning explains a larger proportion of variance for low 533 

orders of zeta than for high ones, indicating that the spatial distribution of rare species 534 

is more predictable than for common species (Figure 5). As expected, the I-splines 535 

explain a larger part of variations compared to linear regressions for both ζ2 and ζ10, 536 

due to their flexibility. In addition, these results linking environment with species 537 

compositional change rather than distance support the interpretation of the fact that 538 

the decline of zeta diversity is better fitted by a power law than by an exponential 539 

parametric form, suggesting deterministic community assembly. 540 

 541 

6. Hierarchical scaling of zeta 542 

 543 

6.1. Description 544 
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Like all biodiversity metrics, zeta diversity is sensitive to scale, i.e. to grain and extent 545 

(Hui and McGeoch, 2014). For compositional change, grain type follows three 546 

general sampling schemes (Scheiner et al., 2011): (i) sites arrayed as cells in a 547 

contiguous grid, (ii) sites arrayed as cells in a regular but non-contiguous grid and (iii) 548 

irregularly distributed sites of potentially varying size, such as islands (Figure 6). For 549 

data based on regular grids, the effect of scale can be assessed by grouping 550 

assemblages with their immediate neighbours (Figure 6a,b). For irregularly 551 

distributed areas, assemblages are grouped based on the distance between them 552 

(Figure 6c).  553 

 554 

When defining commonness based on the relative occupancy of a species (the number 555 

of sites or cells where the species is present divided by the total number of sites) (see 556 

McGeoch and Latombe, 2016), the proportion of rare species necessarily decreases as 557 

grain increases, whereas the proportion of common species increases. This is because 558 

the relative occupancy of a species necessarily increases (or stays constant) as grain 559 

increases. The rate at which rare species become more common with coarser grain 560 

depends on their spatial distribution (are species clustered or not) (Hui et al., 2010; 561 

Hui and A McGeoch, 2007; McGeoch and Gaston, 2002). For example, a species 562 

present in 4 adjacent cells arranged in a square (i.e. highest possible level of 563 

clustering) in a n × n continuous grid (Figure 6a) has an occupancy of 4/n2, and an 564 

occupancy of 1/(n/2)2 = 4/n2 once the grain is doubled if all four cells are combined 565 

into a single one. Any other spatial arrangement of the four cells will therefore 566 

generate an occupancy higher than 4/n2. 567 

 568 
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However, from a community perspective, species commonness and rarity are relative 569 

notions (McGeoch and Latombe, 2016). For a given occupancy, a species will be 570 

common in a community in which other species have a lower occupancy, and 571 

conversely. As we showed in the description of the zeta decline, the shape of the 572 

species retention rate across orders of zeta enables defining the threshold at which 573 

species can be considered to be rare or common. The distinction between rare and 574 

common species can therefore vary differently across scales for communities with 575 

different spatial arrangements of their species (McGeoch and Gaston, 2002). Species 576 

with different levels of spatial clustering will therefore contribute differently to the 577 

various orders of zeta diversity depending on the grain of the study. Species that are 578 

spatially dispersed will contribute to higher orders of zeta when the grain becomes 579 

coarser than species that are spatially clustered (Figure 7).  580 

 581 

Typical research questions that can be addressed by exploring the hierarchical scaling 582 

of zeta diversity therefore include: (i) how the characteristic of being common or rare 583 

varies with grain; and (ii) whether the sampling effort is sufficient to comprehensively 584 

study species turnover of both common and rare species. 585 

 586 

In the zetadiv package, the functions rescale.regular and rescale.min.dist 587 

aggregate the species occurrence data, and combine the environmental data and the 588 

coordinates following a user-specified function such as the mean, based on the 589 

neighbours and on minimum distance, respectively, for a specific level of 590 

aggregation. The functions Zeta.scale.regular and Zeta.scale.min.dist 591 

compute ζi for a specific order i, for a range of levels of aggregation for the two 592 

methods. For rescale.min.dist and Zeta.scale.min.dist, the assemblages 593 
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are aggregated iteratively: given a list of assemblages in a specific order, the first 594 

assemblage is combined with the closest ones, then the next available assemblage is 595 

combined with the closest available ones, and so on. Since the order of the 596 

assemblages in the list can impact the outcome of the algorithm, the function 597 

Zeta.scale.min.dist performs the analyses several times for each order and 598 

returns the mean. 599 

 600 

6.2. Example 601 

We assessed the hierarchical scaling of ζ1 to ζ10 by aggregating the 25 × 25 km cells 602 

(from 1 to 10 cells and then to 60 cells by steps of 10, as stated by m = 603 

c(1:10,seq(20,60,10))) based on minimum distance (Figure 6c) using the 604 

following commands (for order = 1 to order = 10): 605 

 606 

set.seed(1) 607 

zeta.scale.irreg <- Zeta.scale.min.dist(xy, data.spec, m = 608 

c(1:10,seq(20,60,10)), order = 1, reorder = 50, normalize = 609 

FALSE, plot = FALSE, zeta.type="exact") 610 

 611 

Since the order in which the cells are aggregated can change the results, the 612 

aggregation is performed 50 times (reorder = 50) and the average zeta values are 613 

computed. 614 

 615 

As expected, zeta values increase as grain increases for all orders of zeta (Figure 8a). 616 

We also compared (ζi- ζi-1) for each grain, to compare the rates of increase across 617 

orders of zeta. Although zeta diversity increases with grain in a similar fashion for all 618 
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orders (Figure 8a), the difference between the zeta values of different orders changes 619 

with grain and between orders. ζ1- ζ2 always decreases as the grain increases (Figure 620 

8b), and the zeta decline becomes more shallow between orders 1 and 2 (Figure 8c). 621 

That is, less rare species are lost when increasing grain. By contrast, for higher orders 622 

of zeta, differences in the rates of increase between two consecutive orders of zeta 623 

increases when grouping 2 or 3 cells, then decreases (Figure 8b). This means that the 624 

zeta decline is steeper across orders 2 to 10 when aggregating 2 or 3 cells than for the 625 

fine grain data and for aggregating many cells (Figure 8c). These results suggest that a 626 

spatial grain of ~1250 km2 (~35 x 35 km) may be appropriate to study bird 627 

communities over Australia, as the sharper and more steady decline of zeta diversity 628 

indicates a more gradual distinction between common and rare species than at finer 629 

and coarser grains, for which the zeta decline becomes more shallow as the zeta order 630 

increases (Figure 8b,c). The ~1250 km2 grain may therefore be related to the scale at 631 

which bird species of different levels of rarity aggregate in South-East Australia. 632 

 633 

7. Concluding remarks 634 

 635 

By extending the analyses of compositional change to more than pairwise 636 

combinations of assemblages, zeta diversity provides a more detailed understanding 637 

of species diversity and a more exhaustive description of community assemblages 638 

than using alpha and beta diversity alone. In addition to the clear advantages of 639 

obtaining accurate descriptions of biodiversity, such as the possibility to better 640 

identify the processes that generates it, zeta diversity also enables the differentiation 641 

of the role of common species from rare ones in structuring biodiversity patterns. As 642 

we have shown in the examples above illustrating the four different types of analyses 643 
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currently applicable to zeta diversity applied to bird communities over South-East 644 

Australia, considering multiple orders of zeta diversity sheds light on differences in 645 

the characteristics and drivers of spatial distribution of common and rare species. It 646 

also shows the impact of the spatial resolution at which communities are defined for 647 

distinguishing between common and rare species.  648 

 649 

The package is also under constant development, and future versions of zetadiv will 650 

pay special attention to spatially mapping zeta diversity and the parametric form of 651 

zeta decline. With increasing recognition of the importance of temporal changes in 652 

compositional change (Magurran, 2011) as a consequence of climate change and 653 

biotic homogenization (Dornelas et al., 2014), specific functions for temporal decay 654 

will be implemented in the future. Current functions can nonetheless already be used 655 

to perform such analyses on zeta diversity (e.g. using Zeta.decline.mc using the 656 

closest assemblages along a temporal gradient). Given the importance of accounting 657 

for phylogenetic and functional traits information for the management and 658 

conservation of ecological communities (Devictor et al., 2010), phylogenetic and 659 

functional measures of zeta diversity will be developed, reflecting similar recent 660 

developments for beta diversity (Graham and Fine, 2008; Loiseau et al., 2017). 661 

Finally, measures of zeta diversity will be developed for measuring turnover in 662 

species interactions. 663 

 664 

Software availability 665 

Name of Software: zetadiv (version 1.1.1). 666 

Year of First Release: 2015. 667 

Developers: G. Latombe, Melodie A. McGeoch, David A. Nipperess, Cang Hui 668 
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Maintainer: G. Latombe 669 

E-mail: Latombe.guillaume@gmail.com 670 

Available from the CRAN: https://CRAN.R-project.org/package=zetadiv 671 
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FIGURES 821 

 822 

Figure 1. Four (amongst many) different ways to partition species turnover when 3 823 

assemblages (zeta order = 3) are combined. Only considering richness (alpha 824 

diversity, corresponding to ζ1) and pairwise compositional change (beta diversity, 825 

corresponding to ζ2, where zeta order = 2) provides an incomplete description of the 826 

community. Numbers in bold and underlined are the values of zeta diversity for 827 

orders 1 to 3. 828 
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 829 

Figure 2. Zeta decline between orders 1 to 50 characterising the bird data for 25 × 25 830 

km cells computed with a) Zeta.decline.ex (‘expected’, i.e. all combinations) and 831 

b) Zeta.decline.mc with sam=1000 and using a non-directional nearest-832 

neighbour (NON) subsampling scheme. 833 
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 835 

Figure 3. Distance decay of ζ2 to ζ10 for the bird data for 25 × 25 km cells using a) a 836 

linear regression and b) a generalised additive model (GAM). The linear regression 837 

shows clear distance decay, with a steeper slope for ζ3 and ζ5 than for ζ2, suggesting 838 

that rare species are dispersed relative to the space-filling properties of the species 839 

with higher occurrence levels. The GAM also reveals three slightly different rates of 840 

decline for zeta ζ2 (with thresholds at ~500 km and ~1000km) and two clearer 841 

different rates of decline for zeta ζ3 (with a threshold at ~800 km), indicated by the 842 

vertical blue lines.  843 
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 844 

Figure 4. I-splines explaining zeta diversity of bird assemblages over South-East 845 

Australia for (a)  ζ2 and (b) ζ10, using 7 environmental variables and spatial distance, 846 

for 25 × 25 km cells. The relative maximum values of the splines indicate the relative 847 

contribution of each variable to explaining zeta diversity. By contrast, the slope of the 848 

splines provide information on how the influence of each variable changes along the 849 

gradient of values. For example, changes in precipitation have more influence on 850 

compositional change in dry areas (low rescaled range value) than in wet areas (high 851 

rescaled range value), especially for ζ10 (Latombe et al. 2017). 852 
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 854 

Figure 5. Proportion of variation (variation partitioning) in ζ2 and ζ10 explained by 855 

environmental and distance variables for the bird data for 25 × 25 km cells, when I-856 

splines (a,b) and linear regressions (c,d) are used. The larger proportion of variation 857 

explained by the environment is consistent with the relative amplitudes of the 858 

corresponding I-splines (Figure 4). 859 
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 861 

Figure 6. Resampling of data depending on the initial sampling scheme, classified 862 

according to three of the four sampling schemes defined by Scheiner et al. (2011) (the 863 

fourth type, strictly nested quadrats, is not relevant here) (see also McGeoch et al., 864 

2017). For a) a continuous grid and b) a regular but discontinuous grid, adjacent cells 865 

are grouped together. For c) irregularly distributed sites of potentially varying size, 866 

such as islands, sites are grouped based on the distance between them. For a) and b), 867 

resampling based on minimum distance can also be applied to the grid cells, but 868 

grouping adjacent sites is not applicable to c). For a) and b), if the number of cells at 869 

fine grain is not a divisor of the number of cells at coarse grains, some cells are lost 870 

during aggregation. For c), the order in which sites are grouped can influence the final 871 

configuration. The bird datasets can be seen as a) and c), since the original cells are 872 

regularly distributed, but only cells with observed richness within 10% of estimated 873 

richness are included and the remaining cells are therefore irregularly distributed, but 874 

have a constant area.  875 
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 876 

Figure 7. Effect of species spatial aggregation on their contribution to different orders 877 

of zeta when the grain changes. a) Highly dispersed species still contribute to high 878 

orders of zeta under the ALL sampling scheme (orders 1 to 7 in this example, since 879 

the species is present in 7 different grid cells) when the grain becomes coarser. b) At 880 

fine grain, spatially aggregated species contribute to higher orders of zeta (orders 1 to 881 

7) than at coarse grain (orders 1 to 3). 882 
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 884 

Figure 8. Scale dependence of ζ1 to ζ6 for the bird data by aggregating 1 to 60 cells 885 

based on minimum distance (Figure 6c). a) As the grain increases and cells are 886 

aggregated, species share more cells. b) For orders ≥ 2, the difference (ζi - ζi+1) 887 

initially increases with grain, then decreases (Hui et al., 2010). c) The zeta decline 888 

from orders 1 to 10 is slightly sharper when aggregating 2 or 3 cells (~1500 km2; the 889 

grain is indicated on the right) than without aggregating cells (fine grain, 890 

corresponding to the ‘1’ zeta decline) or when aggregating more cells (coarse grain, 891 

i.e. >4 in this case). 892 
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