179 research outputs found

    Flat liquid jet as a highly efficient source of terahertz radiation

    Get PDF
    Polar liquids are strong absorbers of electromagnetic waves in the terahertz range, therefore, historically such liquids have not been considered as good candidates for terahertz sources. However, flowing liquid medium has explicit advantages, such as a higher damage threshold compared to solid-state sources and more efficient ionization process compared to gases. Here we report systematic study of efficient generation of terahertz radiation in flat liquid jets under sub-picosecond single-color optical excitation. We demonstrate how medium parameters such as molecular density, ionization energy and linear absorption contribute to the terahertz emission from the flat liquid jets. Our simulation and experimental measurements reveal that the terahertz energy has quasi-quadratic dependence on the optical excitation pulse energy. Moreover, the optimal pump pulse duration, which depends on the thickness of the jet is theoretically predicted and experimentally confirmed. The obtained optical-to-terahertz energy conversion efficiency is more than 0.05%. It is comparable to the commonly used optical rectification in most of electro-optical crystals and two-color air filamentation. These results, significantly advancing prior research, can be successfully applied to create a new alternative source of terahertz radiation

    Global baryon number conservation encoded in net-proton fluctuations measured in Pb–Pb collisions at √sNN=2.76 TeV

    No full text
    Experimental results are presented on event-by-event net-proton fluctuation measurements in Pb–Pb collisions at √sNN = 2.76 TeV, recorded by the ALICE detector at the CERN LHC. These measurements have as their ultimate goal an experimental test of Lattice QCD (LQCD) predictions on second and higher order cumulants of net-baryon distributions to search for critical behavior near the QCD phase boundary. Before confronting them with LQCD predictions, account has to be taken of correlations stemming from baryon number conservation as well as fluctuations of participating nucleons. Both effects influence the experimental measurements and are usually not considered in theoretical calculations. For the first time, it is shown that event-by-event baryon number conservation leads to subtle long-range correlations arising from very early interactions in the collisions

    Production of light-flavor hadrons in pp collisions at √s = 7 and √s = 13 TeV

    No full text
    The production of π±, K±, K0S, K∗(892)0, p, ϕ(1020), Λ, Ξ−, Ω−, and their antiparticles was measured in inelastic proton–proton (pp) collisions at a center-of-mass energy of s√ = 13 TeV at midrapidity (|y|<0.5) as a function of transverse momentum (pT) using the ALICE detector at the CERN LHC. Furthermore, the single-particle pT distributions of K0 S, , and in inelastic pp collisions at √s = 7 TeV are reported here for the first time. The pT distributions are studied at midrapidity within the transverse momentum range 0 ≤ pT ≤ 20 GeV/c, depending on the particle species. The pT spectra, integrated yields, and particle yield ratios are discussed as a function of collision energy and compared with measurements at lower √s and with results from various general-purpose QCD-inspired Monte Carlo models. A hardening of the spectra at high pT with increasing collision energy is observed, which is similar for all particle species under study. The transverse mass and xT ≡ 2pT/ √s scaling properties of hadron production are also studied. As the collision energy increases from √s = 7–13 TeV, the yields of non- and single-strange hadrons normalized to the pion yields remain approximately constant as a function of √s, while ratios for multi-strange hadrons indicate enhancements. The pT-differential cross sections of π±, K± and p (p) are compared with next-to-leading order perturbative QCD calculations, which are found to overestimate the cross sections for π± and p (p) at high pT

    Production of light-flavor hadrons in pp collisions at √s = 7 and √s = 13 TeV

    No full text
    The production of π±, K±, K0S, K∗(892)0, p, ϕ(1020), Λ, Ξ−, Ω−, and their antiparticles was measured in inelastic proton–proton (pp) collisions at a center-of-mass energy of s√ = 13 TeV at midrapidity (|y|<0.5) as a function of transverse momentum (pT) using the ALICE detector at the CERN LHC. Furthermore, the single-particle pT distributions of K0S, Λ, and Λ¯¯¯¯ in inelastic pp collisions at s√=7 TeV are reported here for the first time. The pT distributions are studied at midrapidity within the transverse momentum range 0≤pT≤20 GeV/c, depending on the particle species. The pT spectra, integrated yields, and particle yield ratios are discussed as a function of collision energy and compared with measurements at lower s√ and with results from various general-purpose QCD-inspired Monte Carlo models. A hardening of the spectra at high pT with increasing collision energy is observed, which is similar for all particle species under study. The transverse mass and xT≡2pT/s√ scaling properties of hadron production are also studied. As the collision energy increases from s√ = 7–13 TeV, the yields of non- and single-strange hadrons normalized to the pion yields remain approximately constant as a function of s√, while ratios for multi-strange hadrons indicate enhancements. The pT-differential cross sections of π±, K± and p (p¯¯¯) are compared with next-to-leading order perturbative QCD calculations, which are found to overestimate the cross sections for π± and p (p¯¯¯) at high pT

    Global baryon number conservation encoded in net-proton fluctuations measured in Pb–Pb collisions at s<inf>NN</inf>=2.76 TeV

    No full text
    Experimental results are presented on event-by-event net-proton fluctuation measurements in Pb–Pb collisions at sNN=2.76 TeV, recorded by the ALICE detector at the CERN LHC. These measurements have as their ultimate goal an experimental test of Lattice QCD (LQCD) predictions on second and higher order cumulants of net-baryon distributions to search for critical behavior near the QCD phase boundary. Before confronting them with LQCD predictions, account has to be taken of correlations stemming from baryon number conservation as well as fluctuations of participating nucleons. Both effects influence the experimental measurements and are usually not considered in theoretical calculations. For the first time, it is shown that event-by-event baryon number conservation leads to subtle long-range correlations arising from very early interactions in the collisions

    Production of light-flavor hadrons in pp collisions at √s=7and√s=13TeV

    No full text
    The production of π±, K±, K0 S, K∗(892)0, p, φ(1020), , −, −, and their antiparticles was measured in inelastic proton–proton (pp) collisions at a center-of-mass energy of √s = 13 TeV at midrapidity (|y| < 0.5) as a function of transverse momentum (pT) using the ALICE detector at the CERN LHC. Furthermore, the single-particle pT distributions of K0 S, , and in inelastic pp collisions at √s = 7 TeV are reported here for the first time. The pT distributions are studied at midrapidity within the transverse momentum range 0 ≤ pT ≤ 20 GeV/c, depending on the particle species. The pT spectra, integrated yields, and particle yield ratios are discussed as a function of collision energy and compared with measurements at lower √s and with results from various general-purpose QCD-inspired Monte Carlo models. A hardening of the spectra at high pT with increasing collision energy is observed, which is similar for all particle species under study. The transverse mass and xT ≡ 2pT/ √s scaling properties of hadron production are also studied. As the collision energy increases from √s = 7–13 TeV, the yields of non- and single-strange hadrons normalized to the pion yields remain approximately constant as a function of √s, while ratios for multi-strange hadrons indicate enhancements. The pT-differential cross sections of π±, K± and p (p) are compared with next-to-leading order perturbative QCD calculations, which are found to overestimate the cross sections for π± and p (p) at high pT

    Global baryon number conservation encoded in net-proton fluctuations measured in Pb–Pb collisions at s<inf>NN</inf>=2.76 TeV

    No full text
    Experimental results are presented on event-by-event net-proton fluctuation measurements in Pb–Pb collisions at sNN=2.76 TeV, recorded by the ALICE detector at the CERN LHC. These measurements have as their ultimate goal an experimental test of Lattice QCD (LQCD) predictions on second and higher order cumulants of net-baryon distributions to search for critical behavior near the QCD phase boundary. Before confronting them with LQCD predictions, account has to be taken of correlations stemming from baryon number conservation as well as fluctuations of participating nucleons. Both effects influence the experimental measurements and are usually not considered in theoretical calculations. For the first time, it is shown that event-by-event baryon number conservation leads to subtle long-range correlations arising from very early interactions in the collisions

    Soft-Dielectron Excess in Proton-Proton Collisions at s =13 TeV

    No full text
    A measurement of dielectron production in proton-proton (pp) collisions at √s=13 TeV, recorded with the ALICE detector at the CERN LHC, is presented in this Letter. The data set was recorded with a reduced magnetic solenoid field. This enables the investigation of a kinematic domain at low dielectron (ee) invariant mass mee and pair transverse momentum pT,ee that was previously inaccessible at the LHC. The cross section for dielectron production is studied as a function of mee, pT,ee, and event multiplicity dNch/dη. The expected dielectron rate from hadron decays, called hadronic cocktail, utilizes a parametrization of the measured η/π0 ratio in pp and proton-nucleus collisions, assuming that this ratio shows no strong dependence on collision energy at low transverse momentum. Comparison of the measured dielectron yield to the hadronic cocktail at 0.15 < mee < 0.6 GeV/c2 and for pT,ee < 0.4 GeV/c indicates an enhancement of soft dielectrons, reminiscent of the “anomalous” soft-photon and soft-dilepton excess in hadron-hadron collisions reported by several experiments under different experimental conditions. The enhancement factor over the hadronic cocktail amounts to 1.61 ± 0.13(stat) ± 0.17(syst, data) ± 0.34(syst, cocktail) in the ALICE acceptance. Acceptance-corrected excess spectra in mee and pT,ee are extracted and compared with calculations of dielectron production from hadronic bremsstrahlung and thermal radiation within a hadronic many-body approach.publishedVersio
    corecore