63 research outputs found
Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation
Concerted political attention has focused on reducing deforestation1,2,3, and this remains the cornerstone of most biodiversity conservation strategies4,5,6. However, maintaining forest cover may not reduce anthropogenic forest disturbances, which are rarely considered in conservation programmes6. These disturbances occur both within forests, including selective logging and wildfires7,8, and at the landscape level, through edge, area and isolation effects9. Until now, the combined effect of anthropogenic disturbance on the conservation value of remnant primary forests has remained unknown, making it impossible to assess the relative importance of forest disturbance and forest loss. Here we address these knowledge gaps using a large data set of plants, birds and dung beetles (1,538, 460 and 156 species, respectively) sampled in 36 catchments in the Brazilian state of ParĂĄ. Catchments retaining more than 69â80% forest cover lost more conservation value from disturbance than from forest loss. For example, a 20% loss of primary forest, the maximum level of deforestation allowed on Amazonian properties under Brazilâs Forest Code5, resulted in a 39â54% loss of conservation value: 96â171% more than expected without considering disturbance effects. We extrapolated the disturbance-mediated loss of conservation value throughout ParĂĄ, which covers 25% of the Brazilian Amazon. Although disturbed forests retained considerable conservation value compared with deforested areas, the toll of disturbance outside ParĂĄâs strictly protected areas is equivalent to the loss of 92,000â139,000âkm2 of primary forest. Even this lowest estimate is greater than the area deforested across the entire Brazilian Amazon between 2006 and 2015 (ref. 10). Species distribution models showed that both landscape and within-forest disturbances contributed to biodiversity loss, with the greatest negative effects on species of high conservation and functional value. These results demonstrate an urgent need for policy interventions that go beyond the maintenance of forest cover to safeguard the hyper-diversity of tropical forest ecosystems
Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests
© 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. Secondary forests (SFs) regenerating on previously deforested land account for large, expanding areas of tropical forest cover. Given that tropical forests rank among Earthâs most important reservoirs of carbon and biodiversity, SFs play an increasingly pivotal role in the carbon cycle and as potential habitat for forest biota. Nevertheless, their capacity to regain the biotic attributes of undisturbed primary forests (UPFs) remains poorly understood. Here, we provide a comprehensive assessment of SF recovery, using extensive tropical biodiversity, biomass, and environmental datasets. These data, collected in 59 naturally regenerating SFs and 30 co-located UPFs in the eastern Amazon, cover >1,600 large- and small-stemmed plant, bird, and dung beetles species and a suite of forest structure, landscape context, and topoedaphic predictors. After up to 40 years of regeneration, the SFs we surveyed showed a high degree of biodiversity resilience, recovering, on average among taxa, 88% and 85% mean UPF species richness and composition, respectively. Across the first 20 years of succession, the period for which we have accurate SF age data, biomass recovered at 1.2% per year, equivalent to a carbon uptake rate of 2.25 Mg/ha per year, while, on average, species richness and composition recovered at 2.6% and 2.3% per year, respectively. For all taxonomic groups, biomass was strongly associated with SF species distributions. However, other variables describing habitat complexityâcanopy cover and understory stem densityâwere equally important occurrence predictors for most taxa. Species responses to biomass revealed a successional transition at approximately 75 Mg/ha, marking the influx of high-conservation-value forest species. Overall, our results show that naturally regenerating SFs can accumulate substantial amounts of carbon and support many forest species. However, given that the surveyed SFs failed to return to a typical UPF state, SFs are not substitutes for UPFs
Environmental Predictors of Seasonal Influenza Epidemics across Temperate and Tropical Climates
Human influenza infections exhibit a strong seasonal cycle in temperate regions. Recent laboratory and epidemiological evidence suggests that low specific humidity conditions facilitate the airborne survival and transmission of the influenza virus in temperate regions, resulting in annual winter epidemics. However, this relationship is unlikely to account for the epidemiology of influenza in tropical and subtropical regions where epidemics often occur during the rainy season or transmit year-round without a well-defined season. We assessed the role of specific humidity and other local climatic variables on influenza virus seasonality by modeling epidemiological and climatic information from 78 study sites sampled globally. We substantiated that there are two types of environmental conditions associated with seasonal influenza epidemics: âcold-dryâ and âhumid-rainyâ. For sites where monthly average specific humidity or temperature decreases below thresholds of approximately 11â12 g/kg and 18â21°C during the year, influenza activity peaks during the cold-dry season (i.e., winter) when specific humidity and temperature are at minimal levels. For sites where specific humidity and temperature do not decrease below these thresholds, seasonal influenza activity is more likely to peak in months when average precipitation totals are maximal and greater than 150 mm per month. These findings provide a simple climate-based model rooted in empirical data that accounts for the diversity of seasonal influenza patterns observed across temperate, subtropical and tropical climates
Pervasive gaps in Amazonian ecological research.
This is the final version. Available from Elsevier via the DOI in this record.âŻData and code availability:
âą
Metadata have been deposited at Zenodo and are publicly available as of the date of publication. DOIs are listed in the key resources table.
âą
All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key resources table.
âą
Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%-18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost.Conselho Nacional de Desenvolvimento CientĂfico (CNPq)Conselho Nacional de Desenvolvimento CientĂfico (CNPq)SĂŁo Paulo Research Foundation (FAPESP)SĂŁo Paulo Research Foundation (FAPESP)SĂŁo Paulo Research Foundation (FAPESP)SĂŁo Paulo Research Foundation (FAPESP)Natural Environment Research Council (NERC)University of Bristol (PolicyBristol)University of Bristol Climate and Net Zero Impact AwardsUniversity of Bristol Elizabeth Blackwell Institute Rapid Research FundingNatural Environment Research Council (NERC)European Unionâs Horizon 202
The outcome of acute schistosomiasis infection in adult mice with postnatal exposure to maternal malnutrition
Maternal malnutrition during the lactation period in early development may have long-term programming effects on adult offspring. We evaluated the combined effects of parasitological behaviour and histopathological features and malnutrition during lactation. Lactating mice and their pups were divided into a control group (fed a normal diet of 23% protein), a protein-restricted group (PR) (fed a diet containing 8% protein) and a caloric-restricted group (CR) (fed according to the PR group intake). At the age of 60 days, the offspring were infected with Schistosoma mansoni cercariae and killed at nine weeks post-infection. Food intake, body and liver masses, leptinaemia, corticosteronaemia, collagen morphometry and neogenesis and the cellular composition of liver granulomas were studied. PR offspring showed reduced weight gain and hypophagia, whereas CR offspring became overweight and developed hyperphagia. The pre-patent period was longer (45 days) in both programmed offspring as compared to controls (40 days). The PR-infected group had higher faecal and intestinal egg output and increased liver damage. The CR-infected group showed a lower number of liver granulomas, increased collagen neogenesis and a higher frequency of binucleate hepatocytes, suggesting a better modulation of the inflammatory response and increased liver regeneration. Taken together, our findings suggest that neonatal malnutrition of offspring during lactation affects the outcome of schistosomiasis in mice
Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation
© 2016 Macmillan Publishers Limited. All rights reserved. Concerted political attention has focused on reducing deforestation, and this remains the cornerstone of most biodiversity conservation strategies. However, maintaining forest cover may not reduce anthropogenic forest disturbances, which are rarely considered in conservation programmes. These disturbances occur both within forests, including selective logging and wildfires, and at the landscape level, through edge, area and isolation effects. Until now, the combined effect of anthropogenic disturbance on the conservation value of remnant primary forests has remained unknown, making it impossible to assess the relative importance of forest disturbance and forest loss. Here we address these knowledge gaps using a large data set of plants, birds and dung beetles (1,538, 460 and 156 species, respectively) sampled in 36 catchments in the Brazilian state of Parå. Catchments retaining more than 69-80% forest cover lost more conservation value from disturbance than from forest loss. For example, a 20% loss of primary forest, the maximum level of deforestation allowed on Amazonian properties under Brazil's Forest Code, resulted in a 39-54% loss of conservation value: 96-171% more than expected without considering disturbance effects. We extrapolated the disturbance-mediated loss of conservation value throughout Parå, which covers 25% of the Brazilian Amazon. Although disturbed forests retained considerable conservation value compared with deforested areas, the toll of disturbance outside Parå's strictly protected areas is equivalent to the loss of 92,000-139,000 km2 of primary forest. Even this lowest estimate is greater than the area deforested across the entire Brazilian Amazon between 2006 and 2015 (ref. 10). Species distribution models showed that both landscape and within-forest disturbances contributed to biodiversity loss, with the greatest negative effects on species of high conservation and functional value. These results demonstrate an urgent need for policy interventions that go beyond the maintenance of forest cover to safeguard the hyper-diversity of tropical forest ecosystems
- âŠ