269 research outputs found

    Pathways and Management of Phosphorus in urban areas

    Get PDF
    Due to the finite nature of mineral phosphorus reserves, effective management of anthropogenic phosphorus flows is currently under investigation by the international research community. This article emphasizes the importance of urban phosphorus flows, which are often marginalized due to the greater magnitude of agricultural phosphorus flows. A study on phosphorus flows in Gothenburg, Sweden, points out the potential role of solid waste in nutrient management, as the amounts of phosphorus in solid waste and in wastewater were found to be equal. Importation of food commodities accounts for 50% of the total inflow of phosphorus, and food waste is a major contributor of phosphorus to solid waste. The results suggest that solid waste incineration residues represent a large underestimated sink of phosphorus. Focusing on wastewater as the sole source of recovered phosphorus is not sufficient. The Swedish national goal on phosphorus recycling, which is limited to sewage sludge, targets only a part of the total phosphorus flow that can potentially be recovered. In contrast to previous studies, agricultural flows in Gothenburg were marginal compared to flows related to the urban waste management infrastructure. We emphasize the need for debate on preferable routes for disposal of waste with a high phosphorus content. Both recovery potential and usefulness of the recovered product for agricultural purposes have to be considered. Impacts of five waste management strategies on phosphorus flows were evaluated: incineration of all the waste, comprehensive food waste separation, installation of kitchen grinders, urine diversion, and separation of blackwater and food waste

    Dysferlin Forms a Dimer Mediated by the C2 Domains and the Transmembrane Domain In Vitro and in Living Cells

    Get PDF
    Dysferlin was previously identified as a key player in muscle membrane repair and its deficiency leads to the development of muscular dystrophy and cardiomyopathy. However, little is known about the oligomerization of this protein in the plasma membrane. Here we report for the first time that dysferlin forms a dimer in vitro and in living adult skeletal muscle fibers isolated from mice. Endogenous dysferlin from rabbit skeletal muscle exists primarily as a ∼460 kDa species in detergent-solubilized muscle homogenate, as shown by sucrose gradient fractionation, gel filtration and cross-linking assays. Fluorescent protein (YFP) labeled human dysferlin forms a dimer in vitro, as demonstrated by fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) analyses. Dysferlin also dimerizes in living cells, as probed by fluorescence resonance energy transfer (FRET). Domain mapping FRET experiments showed that dysferlin dimerization is mediated by its transmembrane domain and by multiple C2 domains. However, C2A did not significantly contribute to dimerization; notably, this is the only C2 domain in dysferlin known to engage in a Ca-dependent interaction with cell membranes. Taken together, the data suggest that Ca-insensitive C2 domains mediate high affinity self-association of dysferlin in a parallel homodimer, leaving the Ca-sensitive C2A domain free to interact with membranes

    Proteomic Analysis of the Dysferlin Protein Complex Unveils Its Importance for Sarcolemmal Maintenance and Integrity

    Get PDF
    Dysferlin is critical for repair of muscle membranes after damage. Mutations in dysferlin lead to a progressive muscular dystrophy. Recent studies suggest additional roles for dysferlin. We set out to study dysferlin's protein-protein interactions to obtain comprehensive knowledge of dysferlin functionalities in a myogenic context. We developed a robust and reproducible method to isolate dysferlin protein complexes from cells and tissue. We analyzed the composition of these complexes in cultured myoblasts, myotubes and skeletal muscle tissue by mass spectrometry and subsequently inferred potential protein functions through bioinformatics analyses. Our data confirm previously reported interactions and support a function for dysferlin as a vesicle trafficking protein. In addition novel potential functionalities were uncovered, including phagocytosis and focal adhesion. Our data reveal that the dysferlin protein complex has a dynamic composition as a function of myogenic differentiation. We provide additional experimental evidence and show dysferlin localization to, and interaction with the focal adhesion protein vinculin at the sarcolemma. Finally, our studies reveal evidence for cross-talk between dysferlin and its protein family member myoferlin. Together our analyses show that dysferlin is not only a membrane repair protein but also important for muscle membrane maintenance and integrity

    Lack of SMARCB1 expression characterizes a subset of human and murine peripheral T-cell lymphomas.

    Get PDF
    Peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS) is a heterogeneous group of malignancies with poor outcome. Here, we identify a subgroup, PTCL-NOS <sup>SMARCB1-</sup> , which is characterized by the lack of the SMARCB1 protein and occurs more frequently in young patients. Human and murine PTCL-NOS <sup>SMARCB1-</sup> show similar DNA methylation profiles, with hypermethylation of T-cell-related genes and hypomethylation of genes involved in myeloid development. Single-cell analyses of human and murine tumors revealed a rich and complex network of interactions between tumor cells and an immunosuppressive and exhausted tumor microenvironment (TME). In a drug screen, we identified histone deacetylase inhibitors (HDACi) as a class of drugs effective against PTCL-NOS <sup>Smarcb1-</sup> . In vivo treatment of mouse tumors with SAHA, a pan-HDACi, triggered remodeling of the TME, promoting replenishment of lymphoid compartments and reversal of the exhaustion phenotype. These results provide a rationale for further exploration of HDACi combination therapies targeting PTCL-NOS <sup>SMARCB1-</sup> within the TME

    The cerebrospinal fluid proteome in HIV infection: change associated with disease severity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Central nervous system (CNS) infection is a nearly universal feature of untreated systemic HIV infection with a clinical spectrum that ranges from chronic asymptomatic infection to severe cognitive and motor dysfunction. Analysis of cerebrospinal fluid (CSF) has played an important part in defining the character of this evolving infection and response to treatment. To further characterize CNS HIV infection and its effects, we applied advanced high-throughput proteomic methods to CSF to identify novel proteins and their changes with disease progression and treatment.</p> <p>Results</p> <p>After establishing an <it>accurate mass and time </it>(AMT) tag database containing 23,141 AMT tags for CSF peptides, we analyzed 91 CSF samples by LC-MS from 12 HIV-uninfected and 14 HIV-infected subjects studied in the context of initiation of antiretroviral therapy and correlated abundances of identified proteins a) within and between subjects, b) with all other proteins across the entire sample set, and c) with "external" CSF biomarkers of infection (HIV RNA), immune activation (neopterin) and neural injury (neurofilament light chain protein, NFL). We identified a mean of 2,333 +/- 328 (SD) peptides covering 307 +/-16 proteins in the 91 CSF sample set. Protein abundances differed both between and within subjects sampled at different time points and readily separated those with and without HIV infection. Proteins also showed inter-correlations across the sample set that were associated with biologically relevant dynamic processes. One-hundred and fifty proteins showed correlations with the external biomarkers. For example, using a threshold of cross correlation coefficient (Pearson's) ≤ -0.3 and ≥0.3 for potentially meaningful relationships, a total of 99 proteins correlated with CSF neopterin (43 negative and 56 positive correlations) and related principally to neuronal plasticity and survival and to innate immunity. Pathway analysis defined several networks connecting the identified proteins, including one with amyloid precursor protein as a central node.</p> <p>Conclusions</p> <p>Advanced CSF proteomic analysis enabled the identification of an array of novel protein changes across the spectrum of CNS HIV infection and disease. This initial analysis clearly demonstrated the value of contemporary state-of-the-art proteomic CSF analysis as a discovery tool in HIV infection with likely similar application to other neurological inflammatory and degenerative diseases.</p

    International consensus definition of low anterior resection syndrome

    Get PDF
    BACKGROUND: Low anterior resection syndrome is pragmatically defined as disordered bowel function after rectal resection leading to a detriment in quality of life. This broad characterization does not allow for precise estimates of prevalence. The low anterior resection syndrome score was designed as a simple tool for clinical evaluation of low anterior resection syndrome. Although the low anterior resection syndrome score has good clinical utility, it may not capture all important aspects that patients may experience. OBJECTIVE: The aim of this collaboration was to develop an international consensus definition of low anterior resection syndrome that encompasses all aspects of the condition and is informed by all stakeholders. DESIGN: This international patient-provider initiative used an online Delphi survey, regional patient consultation meetings, and an international consensus meeting. PARTICIPANTS: Three expert groups participated: patients, surgeons, and other health professionals from 5 regions (Australasia, Denmark, Spain, Great Britain and Ireland, and North America) and in 3 languages (English, Spanish, and Danish). MAIN OUTCOME MEASURE: The primary outcome measured was the priorities for the definition of low anterior resection syndrome. RESULTS: Three hundred twenty-five participants (156 patients) registered. The response rates for successive rounds of the Delphi survey were 86%, 96%, and 99%. Eighteen priorities emerged from the Delphi survey. Patient consultation and consensus meetings refined these priorities to 8 symptoms and 8 consequences that capture essential aspects of the syndrome. LIMITATIONS: Sampling bias may have been present, in particular, in the patient panel because social media was used extensively in recruitment. There was also dominance of the surgical panel at the final consensus meeting despite attempts to mitigate this. CONCLUSIONS: This is the first definition of low anterior resection syndrome developed with direct input from a large international patient panel. The involvement of patients in all phases has ensured that the definition presented encompasses the vital aspects of the patient experience of low anterior resection syndrome. The novel separation of symptoms and consequences may enable greater sensitivity to detect changes in low anterior resection syndrome over time and with intervention

    Primary Hyperparathyroidism Influences the Expression of Inflammatory and Metabolic Genes in Adipose Tissue

    Get PDF
    Background: Primary hyperparathyroidism (PHPT) is characterised by increased production of parathyroid hormone (PTH) resulting in elevated serum calcium levels. The influence on bone metabolism with altered bone resorption is the most studied clinical condition in PHPT. In addition to this, patients with PHPT are at increased risk of non-skeletal diseases, such as impaired insulin sensitivity, arterial hypertension and increased risk of death by cardiovascular diseases (CVD), possibly mediated by a chronic low-grade inflammation. The aim of this study was to investigate whether adipose tissue reflects the low-grade inflammation observed in PHPT patients. Methodology/Principal Findings: Subcutaneous fat tissue from the neck was sampled from 16 non-obese patients with PHPT and from 16 patients operated for benign thyroid diseases, serving as weight-matched controls. RNA was extracted and global gene expression was analysed with Illumina BeadArray Technology. We found 608 differentially expressed genes (q-value,0.05), of which 347 were up-regulated and 261 were down-regulated. Gene ontology analysis showed that PHPT patients expressed increased levels of genes involved in immunity and defense (e.g. matrix metallopeptidase 9, S100 calcium binding protein A8 and A9, CD14, folate receptor 2), and reduced levels of genes involved in metabolic processes. Analysis of transcription factor binding sites present in the differentially expressed genes corroborated the up-regulation of inflammatory processes. Conclusions/Significance: Our findings demonstrate that PHPT strongly influences gene regulation in fat tissue, which may result in altered adipose tissue function and release of pathogenic factors that increase the risk of CVD

    Elevated calpain activity in acute myelogenous leukemia correlates with decreased calpastatin expression

    Get PDF
    Calpains are intracellular cysteine proteases that have crucial roles in many physiological and pathological processes. Elevated calpain activity has been associated with many pathological states. Calpain inhibition can be protective or lethal depending on the context. Previous work has shown that c-myc transformation regulates calpain activity by suppressing calpastatin, the endogenous negative regulator of calpain. Here, we have investigated calpain activity in primary acute myelogenous leukemia (AML) blast cells. Calpain activity was heterogeneous and greatly elevated over a wide range in AML blast cells, with no correlation to FAB classification. Activity was particularly elevated in the CD34+CD38− enriched fraction compared with the CD34+CD38+ fraction. Treatment of the cells with the specific calpain inhibitor, PD150606, induced significant apoptosis in AML blast cells but not in normal equivalent cells. Sensitivity to calpain inhibition correlated with calpain activity and preferentially targeted CD34+CD38− cells. There was no correlation between calpain activity and p-ERK levels, suggesting the ras pathway may not be a major contributor to calpain activity in AML. A significant negative correlation existed between calpain activity and calpastatin, suggesting calpastatin is the major regulator of activity in these cells. Analysis of previously published microarray data from a variety of AML patients demonstrated a significant negative correlation between calpastatin and c-myc expression. Patients who achieved a complete remission had significantly lower calpain activity than those who had no response to treatment. Taken together, these results demonstrate elevated calpain activity in AML, anti-leukemic activity of calpain inhibition and prognostic potential of calpain activity measurement

    Fructose-Bisphophate Aldolase Exhibits Functional Roles between Carbon Metabolism and the hrp System in Rice Pathogen Xanthomonas oryzae pv. oryzicola

    Get PDF
    Fructose-bisphophate aldolase (FbaB), is an enzyme in glycolysis and gluconeogenesis in living organisms. The mutagenesis in a unique fbaB gene of Xanthomonas oryzae pv. oryzicola, the causal agent of rice bacterial leaf streak, led the pathogen not only unable to use pyruvate and malate for growth and delayed its growth when fructose was used as the sole carbon source, but also reduced extracellular polysaccharide (EPS) production and impaired bacterial virulence and growth in rice. Intriguingly, the fbaB promoter contains an imperfect PIP-box (plant-inducible promoter) (TTCGT-N9-TTCGT). The expression of fbaB was negatively regulated by a key hrp regulatory HrpG and HrpX cascade. Base substitution in the PIP-box altered the regulation of fbaB with the cascade. Furthermore, the expression of fbaB in X. oryzae pv. oryzicola RS105 strain was inducible in planta rather than in a nutrient-rich medium. Except other hrp-hrc-hpa genes, the expression of hrpG and hrpX was repressed and the transcripts of hrcC, hrpE and hpa3 were enhanced when fbaB was deleted. The mutation in hrcC, hrpE or hpa3 reduced the ability of the pathogen to acquire pyruvate and malate. In addition, bacterial virulence and growth in planta and EPS production in RΔfbaB mutant were completely restored to the wild-type level by the presence of fbaB in trans. This is the first report to demonstrate that carbohydrates, assimilated by X. oryzae pv. oryzicola, play critical roles in coordinating hrp gene expression through a yet unknown regulator
    corecore