22 research outputs found

    A robust system for RNA interference in the chicken using a modified microRNA operon

    Get PDF
    AbstractRNA interference (RNAi) provides an effective method to silence gene expression and investigate gene function. However, RNAi tools for the chicken embryo have largely been adapted from vectors designed for mammalian cells. Here we present plasmid and retroviral RNAi vectors specifically designed for optimal gene silencing in chicken cells. The vectors use a chicken U6 promoter to express RNAs modelled on microRNA30, which are embedded within chicken microRNA operon sequences to ensure optimal Drosha and Dicer processing of transcripts. The chicken U6 promoter works significantly better than promoters of mammalian origin and in combination with a microRNA operon expression cassette (MOEC), achieves up to 90% silencing of target genes. By using a MOEC, we show that it is also possible to simultaneously silence two genes with a single vector. The vectors express either RFP or GFP markers, allowing simple in vivo tracking of vector delivery. Using these plasmids, we demonstrate effective silencing of Pax3, Pax6, Nkx2.1, Nkx2.2, Notch1 and Shh in discrete regions of the chicken embryonic nervous system. The efficiency and ease of use of this RNAi system paves the way for large-scale genetic screens in the chicken embryo

    The Cyst Nematode SPRYSEC Protein RBP-1 Elicits Gpa2- and RanGAP2-Dependent Plant Cell Death

    Get PDF
    Plant NB-LRR proteins confer robust protection against microbes and metazoan parasites by recognizing pathogen-derived avirulence (Avr) proteins that are delivered to the host cytoplasm. Microbial Avr proteins usually function as virulence factors in compatible interactions; however, little is known about the types of metazoan proteins recognized by NB-LRR proteins and their relationship with virulence. In this report, we demonstrate that the secreted protein RBP-1 from the potato cyst nematode Globodera pallida elicits defense responses, including cell death typical of a hypersensitive response (HR), through the NB-LRR protein Gpa2. Gp-Rbp-1 variants from G. pallida populations both virulent and avirulent to Gpa2 demonstrated a high degree of polymorphism, with positive selection detected at numerous sites. All Gp-RBP-1 protein variants from an avirulent population were recognized by Gpa2, whereas virulent populations possessed Gp-RBP-1 protein variants both recognized and non-recognized by Gpa2. Recognition of Gp-RBP-1 by Gpa2 correlated to a single amino acid polymorphism at position 187 in the Gp-RBP-1 SPRY domain. Gp-RBP-1 expressed from Potato virus X elicited Gpa2-mediated defenses that required Ran GTPase-activating protein 2 (RanGAP2), a protein known to interact with the Gpa2 N terminus. Tethering RanGAP2 and Gp-RBP-1 variants via fusion proteins resulted in an enhancement of Gpa2-mediated responses. However, activation of Gpa2 was still dependent on the recognition specificity conferred by amino acid 187 and the Gpa2 LRR domain. These results suggest a two-tiered process wherein RanGAP2 mediates an initial interaction with pathogen-delivered Gp-RBP-1 proteins but where the Gpa2 LRR determines which of these interactions will be productive

    Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes

    Get PDF
    AbstractObjectiveWe sought to assess whether genetic risk factors for atrial fibrillation can explain cardioembolic stroke risk.MethodsWe evaluated genetic correlations between a prior genetic study of AF and AF in the presence of cardioembolic stroke using genome-wide genotypes from the Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and 28,026 referents). We tested whether a previously-validated AF polygenic risk score (PRS) associated with cardioembolic and other stroke subtypes after accounting for AF clinical risk factors.ResultsWe observed strong correlation between previously reported genetic risk for AF, AF in the presence of stroke, and cardioembolic stroke (Pearson’s r=0.77 and 0.76, respectively, across SNPs with p &lt; 4.4 × 10−4 in the prior AF meta-analysis). An AF PRS, adjusted for clinical AF risk factors, was associated with cardioembolic stroke (odds ratio (OR) per standard deviation (sd) = 1.40, p = 1.45×10−48), explaining ∼20% of the heritable component of cardioembolic stroke risk. The AF PRS was also associated with stroke of undetermined cause (OR per sd = 1.07, p = 0.004), but no other primary stroke subtypes (all p &gt; 0.1).ConclusionsGenetic risk for AF is associated with cardioembolic stroke, independent of clinical risk factors. Studies are warranted to determine whether AF genetic risk can serve as a biomarker for strokes caused by AF.</jats:sec

    Assessing the Roles of Endogenous Retrovirus EAV-HP in Avian Leukosis Virus Subgroup J Emergence and Tolerance

    No full text
    Avian leukosis virus (ALV) subgroup J is thought to have emerged through a recombination event between an unknown exogenous ALV and the endogenous retrovirus elements designated EAV-HP. All EAV-HP elements identified to date in the chicken genome show large deletions, including that of the entire pol gene. Here we report the identification of four segregating chicken EAV-HP proviruses with complete pol genes, one of which shows exceptionally high sequence identity and a close phylogenetic relationship with ALV-J with respect to the env gene. Embryonic expression of EAV-HP env has been suggested as a factor associated with immunological tolerance induction in a proportion of ALV-J-infected meat-type chickens. In support of this, env gene transcripts expressed from two of the four newly identified EAV-HP proviruses were demonstrated in chicken embryos. However, when ALV-J-infected outbred meat-type chickens were assessed, the presence of intact EAV-HP proviruses failed to directly correlate with ALV-J tolerance. This association was further examined using F(2) progeny of two inbred lines of layer chicken that differed in EAV-HP status and immunological responses to ALV-J. Immunological tolerance developed in a small proportion of F(2) progeny birds, reflecting the expected phenotypic ratio for inheritance of a double-recessive genotype; however, the status of tolerance did not show any direct correlation with the presence of the intact EAV-HP sequence. Nevertheless, identification of an intact chicken EAV-HP locus showing a uniquely close relationship to the ALV-J prototype clone HPRS-103 in the env region provides the strongest evidence of its contribution to the emergence of ALV-J by recombination

    Replication-Competent Bacterial Artificial Chromosomes of Marek's Disease Virus: Novel Tools for Generation of Molecularly Defined Herpesvirus Vaccines

    No full text
    Marek's disease (MD), a highly infectious disease caused by an oncogenic herpesvirus, is one of the few herpesvirus diseases against which live attenuated vaccines are used as the main strategy for control. We have constructed bacterial artificial chromosomes (BACs) of the CVI988 (Rispens) strain of the virus, the most widely used and effective vaccine against MD. Viruses derived from the BAC clones were stable after in vitro and in vivo passages and showed characteristics and growth kinetics similar to those of the parental virus. Molecular analysis of the individual BAC clones showed differences in the structure of the meq gene, indicating that the commercial vaccine contains virus populations with distinct genomic structures. We also demonstrate that, contrary to the published data, the sequence of the L-meq of the BAC clone did not show any frameshift. Virus stocks derived from one of the BAC clones (clone 10) induced 100 percent protection against infection by the virulent strain RB1B, indicating that BAC-derived viruses could be used with efficacies similar to those of the parental CVI988 vaccines. As a DNA vaccine, this BAC clone was also able to induce protection in 6 of 20 birds. Isolation of CVI988 virus from all of these six birds suggested that immunity against challenge was probably dependent on the reconstitution of the virus in vivo and that such viruses are also as immunogenic as the in vitro-grown BAC-derived or parental vaccine viruses. Although the reasons for the induction of protection only in a proportion of birds (33.3%) that received the DNA vaccine are not clear, this is most likely to be related to the suboptimal method of DNA delivery. The construction of the CVI988 BAC is a major step towards understanding the superior immunogenic features of CVI988 and provides the opportunity to exploit the power of BAC technology for generation of novel molecularly defined vaccines

    The Coiled-Coil and Nucleotide Binding Domains of the Potato Rx Disease Resistance Protein Function in Pathogen Recognition and Signaling[W][OA]

    No full text
    Plant genomes encode large numbers of nucleotide binding and leucine-rich repeat (NB-LRR) proteins, some of which mediate the recognition of pathogen-encoded proteins. Following recognition, the initiation of a resistance response is thought to be mediated by the domains present at the N termini of NB-LRR proteins, either a Toll and Interleukin-1 Receptor or a coiled-coil (CC) domain. In order to understand the role of the CC domain in NB-LRR function, we have undertaken a systematic structure–function analysis of the CC domain of the potato (Solanum tuberosum) CC-NB-LRR protein Rx, which confers resistance to Potato virus X. We show that the highly conserved EDVID motif of the CC domain mediates an intramolecular interaction that is dependent on several domains within the rest of the Rx protein, including the NB and LRR domains. Other conserved and nonconserved regions of the CC domain mediate the interaction with the Ran GTPase–activating protein, RanGAP2, a protein required for Rx function. Furthermore, we show that the Rx NB domain is sufficient for inducing cell death typical of hypersensitive plant resistance responses. We describe a model of CC-NB-LRR function wherein the LRR and CC domains coregulate the signaling activity of the NB domain in a recognition-specific manner

    Impact of pharmacists to improve patient care in the critically ill: A large multicenter analysis using meaningful metrics with the medication regimen complexity-ICU (MRC-ICU)

    No full text
    Objectives: Despite the established role of the critical care pharmacist on the ICU multiprofessional team, critical care pharmacist workloads are likely not optimized in the ICU. Medication regimen complexity (as measured by the Medication Regimen Complexity-ICU [MRC-ICU] scoring tool) has been proposed as a potential metric to optimize critical care pharmacist workload but has lacked robust external validation. The purpose of this study was to test the hypothesis that MRC-ICU is related to both patient outcomes and pharmacist interventions in a diverse ICU population. Design: This was a multicenter, observational cohort study. Setting: Twenty-eight ICUs in the United States. Patients: Adult ICU patients. Interventions: Critical care pharmacist interventions (quantity and type) on the medication regimens of critically ill patients over a 4-week period were prospectively captured. MRC-ICU and patient outcomes (i.e., mortality and length of stay [LOS]) were recorded retrospectively. Measurements and main results: A total of 3,908 patients at 28 centers were included. Following analysis of variance, MRC-ICU was significantly associated with mortality (odds ratio, 1.09; 95% CI, 1.08-1.11; p \u3c 0.01), ICU LOS (β coefficient, 0.41; 95% CI, 00.37-0.45; p \u3c 0.01), total pharmacist interventions (β coefficient, 0.07; 95% CI, 0.04-0.09; p \u3c 0.01), and a composite intensity score of pharmacist interventions (β coefficient, 0.19; 95% CI, 0.11-0.28; p \u3c 0.01). In multivariable regression analysis, increased patient: pharmacist ratio (indicating more patients per clinician) was significantly associated with increased ICU LOS (β coefficient, 0.02; 0.00-0.04; p = 0.02) and reduced quantity (β coefficient, -0.03; 95% CI, -0.04 to -0.02; p \u3c 0.01) and intensity of interventions (β coefficient, -0.05; 95% CI, -0.09 to -0.01). Conclusions: Increased medication regimen complexity, defined by the MRC-ICU, is associated with increased mortality, LOS, intervention quantity, and intervention intensity. Further, these results suggest that increased pharmacist workload is associated with decreased care provided and worsened patient outcomes, which warrants further exploration into staffing models and patient outcomes

    The Dystrophin Glycoprotein Complex Regulates the Epigenetic Activation of Muscle Stem Cell Commitment

    No full text
    Asymmetrically dividing muscle stem cells in skeletal muscle give rise to committed cells, where the myogenic determination factor Myf5 is transcriptionally activated by Pax7. This activation is dependent on Carm1, which methylates Pax7 on multiple arginine residues, to recruit the ASH2L:MLL1/2:WDR5:RBBP5 histone methyltransferase complex to the proximal promoter of Myf5. Here, we found that Carm1 is a specific substrate of p38γ/MAPK12 and that phosphorylation of Carm1 prevents its nuclear translocation. Basal localization of the p38γ/p-Carm1 complex in muscle stem cells occurs via binding to the dystrophin-glycoprotein complex (DGC) through β1-syntrophin. In dystrophin-deficient muscle stem cells undergoing asymmetric division, p38γ/β1-syntrophin interactions are abrogated, resulting in enhanced Carm1 phosphorylation. The resulting progenitors exhibit reduced Carm1 binding to Pax7, reduced H3K4-methylation of chromatin, and reduced transcription of Myf5 and other Pax7 target genes. Therefore, our experiments suggest that dysregulation of p38γ/Carm1 results in altered epigenetic gene regulation in Duchenne muscular dystrophy.We thank Drs. Jeffrey Dilworth and Lynn Megeney for careful reading of the manuscript. We also thank Jennifer Ritchie for animal husbandry, Dr. Lawrence Puente for mass spectrometry analysis, Dr. Chloë van Oostende for microscopy and imaging analysis, Paul Oleynik for FACS, and Fan Xiao, Natasha Mercier, and David Wilson for technical assistance. N.C.C. is a recipient of the Centre for Neuromuscular Disease Scholarship in Translational Research Award from the University of Ottawa Brain and Mind Research Institute and was supported by Postdoctoral fellowships from the Canadian Institutes of Health Research (CIHR) and the Ontario Institute for Regenerative Medicine (OIRM). F.P.C. was supported by a Postdoctoral fellowship from the French Muscular Dystrophy Association (AFM)-Téléthon (380782). C.E.B. is supported by a Postdoctoral fellowship from OIRM. M.L. was supported by a Postdoctoral fellowship from CIHR. P.M.-C. acknowledges support from ERC-2016-AdG-741966 (STEM-AGING) and SAF2015-67369-R. M.A.R. holds the Canada Research Chair in Molecular Genetics. These studies were carried out with support of grants to M.A.R. from the US NIH (R01AR044031), the Canadian Institutes of Health Research (FDN-148387), the Muscular Dystrophy Association (USA), E-Rare-2: Canadian Institutes of Health Research/Muscular Dystrophy Canada (ERA-132935), and the Stem Cell Network
    corecore