40 research outputs found

    CRAAS: A European Cloud Regime dAtAset Based on the CLAAS-2.1 Climate Data Record

    Get PDF
    Given the important role of clouds in our planet’s climate system, it is crucial to further improve our understanding of their governing processes as well as the resulting spatio-temporal variability of their properties. This co-variability of different cloud optical properties is adequately represented through the well-established concept of cloud regimes. The focus of the present study lies on the creation of a cloud regime dataset over Europe, named “Cloud Regime dAtAset based on the CLAAS-2.1 climate data record” (CRAAS), in order to analyze their variability and their changes at different spatio-temporal scales. In addition, co-occurrences between the cloud regimes and large-scale weather patterns are investigated. The CLoud property dAtAset using Spinning Enhanced Visible and Infrared (SEVIRI) edition 2.1 (CLAAS-2.1) data record, which is produced by the Satellite Application Facility on Climate Monitoring (CM SAF), was used as the basis for the derivation of the cloud regimes over Europe for a 14-year period (2004–2017). In particular, the cloud optical thickness (COT) and cloud top pressure (CTP) products of CLAAS-2.1 were used in order to compute 2D histograms. Then, the k-means clustering algorithm was applied to the generated 2D histograms in order to derive the cloud regimes. Eight cloud regimes were identified, which, along with the geographical distribution of their frequency of occurrence, assisted in providing a detailed description of the climate of the cloud properties over Europe. The annual and diurnal variabilities of the eight cloud regimes were studied, and trends in their frequency of occurrence were also examined. Larger changes in the frequency of occurrence of the produced cloud regimes were found for a regime associated to alto- and nimbo-type clouds and for a regime connected to shallow cumulus clouds and fog (−0.65% and +0.70% for the time period of the study, respectively)

    What Can 14CO Measurements Tell Us about OH?

    Get PDF
    The possible use of 14CO measurements to constrain hydroxyl radical (OH) concentrations in the atmosphere is investigated. 14CO is mainly produced in the upper atmosphere from cosmic radiation. Measurements of 14CO at the surface show lower concentrations compared to the upper atmospheric source region, which is the result of oxidation by OH. In this paper, the sensitivity of 14CO mixing ratio surface measurements to the 3-D OH distribution is assessed with the TM5 model. Simulated 14CO mixing ratios agree within a few molecules 14COcm-3 (STP) with existing measurements at five locations worldwide. The simulated cosmogenic 14CO distribution appears mainly sensitive to the assumed upper atmospheric 14C source function, and to a lesser extend to model resolution. As a next step, the sensitivity of 14CO measurements to OH is calculated with the adjoint TM5 model. The results indicate that 14CO measurements taken in the tropics are sensitive to OH in a spatially confined region that varies strongly over time due to meteorological variability. Given measurements with an accuracy of 0.5 molecules 14COcm-3 STP, a good characterization of the cosmogenic 14CO fraction, and assuming perfect transport modeling, a single 14CO measurement may constrain OH to 0.2¿0.3×106 moleculesOHcm-3 on time scales of 6 months and spatial scales of 70×70 degrees (latitude×longitude) between the surface and 500 hPa. The sensitivity of 14CO measurements to high latitude OH is about a factor of five higher. This is in contrast with methyl chloroform (MCF) measurements, which show the highest sensitivity to tropical OH, mainly due to the temperature dependent rate constant of the MCF¿OH reaction. A logical next step will be the analysis of existing 14CO measurements in an inverse modeling framework. This paper presents the required mathematical framework for such an analysis.JRC.H.2-Climate chang

    Tropical methane emissions: A revised view from SCIAMACHY onboard ENVISAT

    Get PDF
    Methane retrievals from near-infrared spectra recorded by the SCIAMACHY instrument onboard ENVISAT hitherto suggested unexpectedly large tropical emissions. Even though recent studies confirm substantial tropical emissions, there were indications for an unresolved error in the satellite retrievals. Here we identify a retrieval error related to inaccuracies in water vapor spectroscopic parameters, causing a substantial overestimation of methane correlated with high water vapor abundances. We report on the overall implications of an update in water spectroscopy on methane retrievals with special focus on the tropics where the impact is largest. The new retrievals are applied in a four-dimensional variational (4D-VAR) data assimilation system to derive a first estimate of the impact on tropical CH_4 sources. Compared to inversions based on previous SCIAMACHY retrievals, annual tropical emission estimates are reduced from 260 to about 201 Tg CH_4 but still remain higher than previously anticipated

    Inverse modeling of global and regional CH_4 emissions using SCIAMACHY satellite retrievals

    Get PDF
    Methane retrievals from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) instrument onboard ENVISAT provide important information on atmospheric CH_4 sources, particularly in tropical regions which are poorly monitored by in situ surface observations. Recently, Frankenberg et al. (2008a, 2008b) reported a major revision of SCIAMACHY retrievals due to an update of spectroscopic parameters of water vapor and CH_4. Here, we analyze the impact of this revision on global and regional CH_4 emissions estimates in 2004, using the TM5-4DVAR inverse modeling system. Inversions based on the revised SCIAMACHY retrievals yield ∌20% lower tropical emissions compared to the previous retrievals. The new retrievals improve significantly the consistency between observed and assimilated column average mixing ratios and the agreement with independent validation data. Furthermore, the considerable latitudinal and seasonal bias correction of the previous SCIAMACHY retrievals, derived in the TM5-4DVAR system by simultaneously assimilating high-accuracy surface measurements, is reduced by a factor of ∌3. The inversions result in significant changes in the spatial patterns of emissions and their seasonality compared to the bottom-up inventories. Sensitivity tests were done to analyze the robustness of retrieved emissions, revealing some dependence on the applied a priori emission inventories and OH fields. Furthermore, we performed a detailed validation of simulated CH_4 mixing ratios using NOAA ship and aircraft profile samples, as well as stratospheric balloon samples, showing overall good agreement. We use the new SCIAMACHY retrievals for a regional analysis of CH_4 emissions from South America, Africa, and Asia, exploiting the zooming capability of the TM5 model. This allows a more detailed analysis of spatial emission patterns and better comparison with aircraft profiles and independent regional emission estimates available for South America. Large CH_4 emissions are attributed to various wetland regions in tropical South America and Africa, seasonally varying and opposite in phase with CH_4 emissions from biomass burning. India, China and South East Asia are characterized by pronounced emissions from rice paddies peaking in the third quarter of the year, in addition to further anthropogenic emissions throughout the year

    On the Temperature Dependence of the Cloud Ice Particle Effective Radius—A Satellite Perspective

    No full text
    Cloud ice particle effective radius in atmospheric models is usually parametrized. A widely‐used parametrization comprises a strong dependence on the temperature. Utilizing available satellite‐based estimates of both cloud ice particle effective radius and cloud‐top temperature we evaluate if a similar temperature‐dependence exists in these observations. We find that for very low cloud‐top temperatures the modeled cloud ice particle effective radius generally agrees on average with satellite observations. For high sub‐zero temperatures however, the modeled cloud ice particle effective radius becomes very large, which is not seen in the satellite observations. We conclude that the investigated parametrization for the cloud ice particle effective radius, and parametrizations with a similar temperature dependence, likely produce systematic biases at the cloud top. Supporting previous studies, our findings suggest that the vertical structure of clouds should be taken into account as factor in potential future updates of the parametrizations for cloud ice particle effective radius.Plain Language Summary: Atmospheric models are often used to diagnose and predict the atmospheric state including clouds. One very important property of clouds that consist of ice particles is the cloud ice particle effective radius. This ice effective radius is based on assumptions about the size and shapes of the ice particles in clouds, and thus parametrized, and is one of the important variables needed for calculating the effect of clouds on electromagnetic radiation, in particular on the solar radiation that enters the Earth's atmosphere. In our study we found that the parametrized ice effective radius agrees well on average and global scale with the ice effective radius inferred from satellite observations for cold clouds. However, we also found that for warmer ice clouds the parametrized ice effective radius is much higher than in satellite observations. Our study suggests that parametrizations of the ice effective radius used in atmospheric models show potential for improvements.Key Points: Comparisons of modeled cloud ice particle effective radius with satellite observations are presented. For very low cloud temperatures the modeled cloud ice particle effective radius agrees on average with satellite observations. Modeled large cloud ice particle effective radii for high sub‐zero temperatures are not found in satellite observations.European Space Agency http://dx.doi.org/10.13039/501100000844https://doi.org/10.5281/zenodo.7445152https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V003https://doi.org/10.5676/EUM_SAF_CM/CLARA_AVHRR/V002http://doi.org/10.5067/MODIS/MYD06_L2.NRT.06

    Four-Dimensional Variational Data Assimilation for Inverse Modelling of Atmospheric Methane Emissions: Method and Comparison with Synthesis Inversion

    No full text
    A four-dimensional variational (4D-Var) data assimilation system for inverse modelling of atmospheric methane emissions is presented. The system is based on the TM5 atmospheric transport model. It can be used for assimilating large volumes of measurements, in particular satellite observations and quasi-continuous in-situ observations, and at the same time it enables the optimization of a large number of model parameters, specifically grid-scale emission rates. Furthermore, the variational method allows to estimate uncertainties in posterior emissions. Here, the system is applied to optimize monthly methane emissions over a 1-year time window on the basis of surface observations from the NOAA-ESRL network. The results are rigorously compared with an analogous inversion by Bergamaschi et al. (2007), which was based on the traditional synthesis approach. The posterior emissions as well as their uncertainties obtained in both inversions show a high degree of consistency. At the same time we illustrate the advantage of 4D-Var in reducing aggregation errors by optimizing emissions at the grid scale of the transport model. The full potential of the assimilation system is exploited in Meirink et al. (2008), who use satellite observations of column-averaged methane mixing ratios to optimize emissions at high spatial resolution, taking advantage of the zooming capability of the TM5 model.JRC.H.2-Climate chang
    corecore