11 research outputs found

    Assoziierung und Aktivierung des TNF-Rezeptor I untersucht mit EinzelmolekĂŒl-Tracking und hochauflösender Mikroskopie in lebenden Zellen

    No full text
    Cellular responses to outer stimuli are the basis for all biological processes. Signal integration is achieved by protein cascades, recognizing and processing molecules from the environment. Factors released by pathogens or inflammation usually induce an inflammatory response, a signal often transduced by Tumour Necrosis Factor alpha (TNF). TNFα receptors TNF-R1 and TNF-R2 can in turn lead to apoptosis or proliferation via NF-B. These processes are closely regulated by membrane compartimentalization, protein interactions and trafficking. Fluorescence microscopy offers a reliable and non-invasive method to probe these cellular events. However, some processes on a native membrane are not resolvable, as they are well below the diffraction limit of microscopy. The recent development of super-resolution fluorescence microscopy methods enables the observation of these cellular players well below this limit: by localizing, tracking and counting molecules with high spatial and temporal resolution, these new fluorescence microscopy methods offer a previously unknown insight into protein interactions at the near-molecular level. Direct stochastic optical reconstruction microscopy (dSTORM) utilizes the reversible, stochastic blinking events of small commercially available fluorescent dyes, while photoactivated localization microscopy (PALM) utilizes phototransformation of genetically encoded fluorescent proteins. By photoactivating only a small fraction of the present fluorophores in each observation interval, single emitters can be localized with high precision and a super-resolved image can be reconstructed. Quantum Dot Triexciton imaging (QDTI) utilizes the three-photon absorption (triexcitonic) properties of quantum dots (QD) and to achieve a twofold resolution increase using conventional confocal microscopes. In this thesis, experimental approaches were implemented to achieve super-resolution microscopy in fixed and live-cells to study the spatial and temporal dynamics of TNF and other cellular signaling events. We introduce QDTI to study the three-dimensional cellular distribution of biological targets, offering an easy method to achieve resolution enhancement in combination with optical sectioning, allowing the preliminary quantification of labeled proteins. As QDs are electron dense, QDTI can be used for correlative fluorescence and transmission electron microscopy, proving the versatility of QD probes. Utilizing the phototransformation properties of fluorescent proteins, single-receptor tracking on live cells was achieved, applying the concept of single particle tracking PALM (sptPALM) to track the dynamics of a TNF-R1-tdEos chimera on the membrane. Lateral receptor dynamics can be tracked with high precision and the influences of ligand addition or lipid disruption on TNF-R1 mobility was observed. The results reveal complex receptor dynamics, implying internalization processes in response to TNFα stimulation and a role for membrane domains with reduced fluidity, so-called lipid raft domains, in TNF-R1 compartimentalization prior or post ligand induction. Comparisons with previously published FCS data show a good accordance, but stressing the increased data depth available in sptPALM experiments. Additionally, the active transport of NF-ÎșB-tdEos fusions was observed in live neurons under chemical stimulation and/or inhibition. Contrary to phototransformable proteins that need no special buffers to exhibit photoconversion or photoactivation, dSTORM has previously been unsuitable for in vivo applications, as organic dyes relied on introducing the probes via immunostaining in concert with a reductive, oxygen-free medium for proper photoswitching behaviour. ATTO655 had been previously shown to be suitable for live-cell applications, as its switching behavior can be catalyzed by the reductive environment of the cytoplasm. By introducing the cell-permeant organic dye via a chemical tag system, a high specificity and low background was achieved. Here, the labeled histone H2B complex and thus single nucleosome movements in a live cell can be observed over long time periods and with ~20 nm resolution. Implementing these new approaches for imaging biological processes with high temporal and spatial resolution provides new insights into the dynamics and spatial heterogeneities of proteins, further elucidating their function in the organism and revealing properties that are usually only detectable in vitro.  ZellulĂ€re Antworten auf externe Stimuli sind die Basis aller biologischer Prozesse. Die Integration dieser Signale wird dabei von Proteinkaskaden ausgefĂŒhrt, welche MolekĂŒle aus der Umgebung wahrnehmen und verarbeiten. Faktoren, welche von Pathogenen oder wĂ€hrend einer EntzĂŒndung freigesetzt werden, induzieren fĂŒr gewöhnlich eine EntzĂŒndungsantwort, eine Reaktion, die oft vom Tumornekrosefaktor alpha (TNFα) vermittelt wird. Die TNFα Rezeptoren TNF-R1 und TNF-R2 vermitteln nach Ligandenbinding Apoptose oder Zellproliferation durch NF-kB. Diese Prozesse sind engmaschig durch Membrankompartimentierung, Proteininteraktionen und -transport reguliert. Fluoreszenzmikroskopie bietet eine zuverlĂ€ssige, nicht-invasive Methode um diese zellulĂ€ren Prozesse zu untersuchen. Allerdings sind einige Prozesse innerhalb einer nativen Membran nicht auflösbar, da sie weit unterhalb der Beugungsgrenze der Lichtmikroskopie stattfinden. Die jĂŒngste Entwicklung der hochauflösenden Fluoreszenzmikroskopiemethoden erlaubt die Beobachtung dieser zellulĂ€ren AblĂ€ufe auf molekularer Ebene: durch das Lokalisieren, Verfolgen und ZĂ€hlen von MolekĂŒlen mit hoher rĂ€umlicher und zeitlicher Auflösung bieten diese neuen Fluoreszenzmethoden bisher unbekannte Einblicke in Proteininteraktionen. Direkte stochastische optische Rekonstruktionsmikroskopie (dSTORM) nutzt die reversiblen, stochastischen Ereignisse von kleinen blinkenden, kommerziell erhĂ€ltlichen Fluoreszenzfarbstoffen, wĂ€hrend die photoaktivierte Lokalisationsmikroskopie (PALM) die Phototransformation fluoreszierenden Proteinen nutzt. Durch das Photoaktivieren lediglich eines kleinen Bruchteils der Fluorophore innerhalb eines Zeitintervalls können einzelne Emitter mit hoher Genauigkeit lokalisiert und ein hochaufgelöstes Bild daraus rekonstruiert werden. Quantum Dot Triexciton Imaging (QDTI) nutzt die Drei-Photonen-Absorption von Quantenpunkten um eine zweifache Auflösungserhöhung mittels eines Konfokalmikroskopes zu erreichen. In dieser Arbeit wurden experimentelle AnsĂ€tze zur hochauflösenden Mikroskopie an fixierten und lebenden Zellen implementiert, um die rĂ€umliche und zeitliche Dynamik von TNF und anderen zellulĂ€ren Signalwegen zu untersuchen. Zur Analyse der dreidimensionalen, zellulĂ€ren Verteilung von biologischen Zielen stellen wir QDTI vor, welches eine einfache Methode zur Verbesserung der Auflösung an Konfokalmikroskopen in Kombination mit optischen Schnitten darstellt. Dies ermöglicht die vorlĂ€ufige Quantifizierung von markierten Proteinen. Da QDs eine hohe Elektronendichte besitzen kann QDTI auch fĂŒr korrelative Fluoreszenz- und Transmissionselektronenmikroskopie genutzt werden, was die Vielseitigkeit der QD-Sonden verdeutlicht. Mit Hilfe des single-particle tracking PALM (sptPALM) Konzepts konnten einzelne RezeptormolekĂŒle verfolgt werden, um die Dynamiken einer TNF-R1-tdEos ChimĂ€re auf der Membran zu beobachten. Die laterale Rezeptordynamik kann hier mit hoher PrĂ€zision gemessen, und die EinflĂŒsse auf die TNF-R1-MobilitĂ€t konnte nach Ligandenzugabe oder die Störung der Membranzusammensetzung analysiert werden. Die Ergebnisse zeigen eine komplexe Rezeptordynamik und lassen sowohl auf Internalisierungsprozesse in Reaktion auf TNFα-Stimulation, als auch auf eine wichtige Rolle von MembrandomĂ€nen mit eingeschrĂ€nkter FluiditĂ€t in der TNF-R1 Kompartimentierung wĂ€hrend der Ligandenbindung schließen. ZusĂ€tzlich wurde der aktive Transport von NF-kB-tdEos Fusionsproteinen in lebenden Neuronen unter chemischer Stimulierung bzw. Inhibierung untersucht. Im Gegensatz zu phototransformierbaren Proteinen, die keine speziellen Puffer zur Photokonversion oder Photoaktivierung benötigen, war dSTORM bisher fĂŒr in vivo Anwendungen ungeeignet, da organische Farbstoffe auf die EinfĂŒhrung ĂŒber ImmunfĂ€rbung in Kombination mit einem reduktiven, Sauerstoff-freiem Medium fĂŒr korrektes Photoschalten angewiesen waren. ATTO655 wurde zuvor als geeignet fĂŒr die Anwendung in lebenden Zellen eingestuft, da das Schaltverhalten durch die reduktive Umgebung des Zytoplasmas katalysiert werden kann. Durch die EinfĂŒhrung von membranpermeablen organischen Farbstoffen ĂŒber ein chemisches Markierungssystem konnte eine hohe SpezifitĂ€t und ein geringer Hintergrund erreicht werden. Hier konnte durch die Markierung des Histon H2B Komplexes die Bewegung einzelner Nukleosome in lebenden Zellen ĂŒber lange ZeitrĂ€ume mit einer Auflösung von ~20 nm beobachtet werden. Die Umsetzung dieser neuen AnsĂ€tze fĂŒr die Darstellung biologischer Prozesse mit hoher zeitlicher und rĂ€umlicher Auflösung liefert neue Einblicke in die Dynamiken und die rĂ€umliche HeterogenitĂ€t von Proteinen und enthĂŒllt Funktionen im Organismus und beleuchtet Eigenschaften, die sonst nur in vitro nachweisbar wĂ€ren

    Live-cell super-resolution imaging with trimethoprim conjugates

    No full text
    Wombacher R, Heidbreder M, van de Linde S, et al. Live-cell super-resolution imaging with trimethoprim conjugates. NATURE METHODS. 2010;7(9):717-719.The spatiotemporal resolution of subdiffraction fluorescence imaging has been limited by the difficulty of labeling proteins in cells with suitable fluorophores. Here we report a chemical tag that allows proteins to be labeled with an organic fluorophore with high photon flux and fast photoswitching performance in live cells. This label allowed us to image the dynamics of human histone H2B protein in living cells at similar to 20 nm resolution
    corecore