240 research outputs found

    From canopy to consumer: what makes and modifes terrestrial DOM in a temperate forest

    Get PDF
    To investigate how source and processing control the composition of “terrestrial” dissolved organic matter (DOM), we combine soil and tree leachates, tree DOM, laboratory bioincubations, and ultrahigh resolution Fourier-transform ion cyclotron resonance mass spectrometry in three common landscape types (upland forest, forested wetland, and poor fen) of Southeast Alaska’s temperate rainforest. Tree (Tsuga heterophylla and Picea sitchensis) needles and bark and soil layers from each site were leached, and tree stemflow and throughfall collected to examine DOM sources. Dissolved organic carbon concentrations were as high as 167 mg CL−1 for tree DOM, suggesting tree DOM fluxes may be substantial given the hypermaritime climate of the region. Condensed aromatics contributed as much as 38% relative abundance of spruce and hemlock bark leachates suggesting coniferous trees are potential sources of condensed aromatics to surface waters. Soil leachates showed soil wetness dictates DOM composition and processing, with wetland soils producing more aromatic formulae and allowing the preservation of traditionally biolabile, aliphatic formulae. Biodegradation impacted soil and tree DOM differently, and though the majority of source-specific marker formulae were consumed for all sources, some marker formulae persisted. Tree DOM was highly biolabile (> 50%) and showed compositional convergence where processing homogenized DOM from different tree sources. In contrast, wetland and upland soil leachate DOM composition diverged and processing diversified DOM from different soil sources during bioincubations. Increasing precipitation intensity predicted with climate change in Southeast Alaska will increase tree leaching and soil DOM flushing, tightening linkages between terrestrial sources and DOM export to the coastal ocean.The authors thank Emily Whitney for her invaluable feld, laboratory, and logistical assistance and Molly Tankersley for creating Fig. 1. They are also grateful to all the helpful researchers at the National High Magnetic Field Laboratory who enabled data acquisition and processing. This work took place on the lands of the Aak’w Kwáan Tlingit. This work was supported by the National Science Foundation through an NSF Graduate Research Fellowship to MIB. A portion of this work was performed at the National High Magnetic Field Laboratory ICR User Facility, which is supported by the National Science Foundation Division of Chemistry and Division of Materials Research through DMR-1644779 and the State of Florida. Conficts of interest/ Competing interests: The authors have no conficts of interests to declare.Ye

    From canopy to consumer: what makes and modifies terrestrial DOM in a temperate forest

    Get PDF
    To investigate how source and processing control the composition of “terrestrial” dissolved organic matter (DOM), we combine soil and tree leachates, tree DOM, laboratory bioincubations, and ultrahigh resolution Fourier-transform ion cyclotron resonance mass spectrometry in three common landscape types (upland forest, forested wetland, and poor fen) of Southeast Alaska’s temperate rainforest. Tree (Tsuga heterophylla and Picea sitchensis) needles and bark and soil layers from each site were leached, and tree stemflow and throughfall collected to examine DOM sources. Dissolved organic carbon concentrations were as high as 167 mg CL−1 for tree DOM, suggesting tree DOM fluxes may be substantial given the hypermaritime climate of the region. Condensed aromatics contributed as much as 38% relative abundance of spruce and hemlock bark leachates suggesting coniferous trees are potential sources of condensed aromatics to surface waters. Soil leachates showed soil wetness dictates DOM composition and processing, with wetland soils producing more aromatic formulae and allowing the preservation of traditionally biolabile, aliphatic formulae. Biodegradation impacted soil and tree DOM differently, and though the majority of source-specific marker formulae were consumed for all sources, some marker formulae persisted. Tree DOM was highly biolabile (> 50%) and showed compositional convergence where processing homogenized DOM from different tree sources. In contrast, wetland and upland soil leachate DOM composition diverged and processing diversified DOM from different soil sources during bioincubations. Increasing precipitation intensity predicted with climate change in Southeast Alaska will increase tree leaching and soil DOM flushing, tightening linkages between terrestrial sources and DOM export to the coastal ocean.The authors thank Emily Whitney for her invaluable feld, laboratory, and logistical assistance and Molly Tankersley for creating Fig. 1. They are also grateful to all the helpful researchers at the National High Magnetic Field Laboratory who enabled data acquisition and processing. This work took place on the lands of the Aak’w Kwáan Tlingit. This work was supported by the National Science Foundation through an NSF Graduate Research Fellowship to MIB. A portion of this work was performed at the National High Magnetic Field Laboratory ICR User Facility, which is supported by the National Science Foundation Division of Chemistry and Division of Materials Research through DMR-1644779 and the State of Florida. Conficts of interest/ Competing interests: The authors have no conficts of interests to declare.Ye

    Increased hypolipidemic benefits of cis-9, trans-11 conjugated linoleic acid in combination with trans-11 vaccenic acid in a rodent model of the metabolic syndrome, the JCR:LA-cp rat

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conjugated linoleic acid (<it>cis</it>-9, <it>trans</it>-11 CLA) and <it>trans</it>-11 vaccenic acid (VA) are found naturally in ruminant-derived foods. CLA has been shown to have numerous potential health related effects and has been extensively investigated. More recently, we have shown that VA has lipid-lowering properties associated with reduced hepatic lipidogenesis and chylomicron secretion in the JCR:LA<it>-cp </it>rat. The aim of this study was to evaluate potential additional hypolipidemic effects of purified forms of CLA and VA in an animal model of the metabolic syndrome (the JCR:LA-<it>cp </it>rat).</p> <p>Methods</p> <p>Twenty four obese JCR:LA-<it>cp </it>rats were randomized and assigned to one of three nutritionally adequate iso-caloric diets containing 1% w/w cholesterol and 15% w/w fat for 16 wk: 1) control diet (CD), 2) 1.0% w/w <it>cis</it>-9, <it>trans</it>-11 CLA (CLA), 3) 1.0% w/w VA and 1% w/w <it>cis</it>-9, <it>trans</it>-11 CLA (VA+CLA). Lean rats were fed the CD to represent normolipidemic conditions.</p> <p>Results</p> <p>Fasting plasma triglyceride (TG), total cholesterol and LDL-cholesterol concentrations were reduced in obese rats fed either the CLA diet or the VA+CLA diet as compared to the obese control group (p < 0.05, p < 0.001; p < 0.001, p < 0.01; p < 0.01, p < 0.001, respectively). The VA+CLA diet reduced plasma TG and LDL-cholesterol to the level of the normolipidemic lean rats and further decreased nonesterified fatty acids compared to the CLA diet alone. Interestingly, rats fed the VA+CLA diet had a higher food intake but lower body weight than the CLA fed group (P < 0.05). Liver weight and TG content were lower in rats fed either CLA (p < 0.05) or VA+CLA diets (p < 0.001) compared to obese control, consistent with a decreased relative protein abundance of hepatic acetyl-CoA carboxylase in both treatment groups (P < 0.01). The activity of citrate synthase was increased in liver and adipose tissue of rats fed, CLA and VA+CLA diets (p < 0.001) compared to obese control, suggesting increased mitochondrial fatty acid oxidative capacity.</p> <p>Conclusion</p> <p>We demonstrate that the hypolipidemic effects of chronic <it>cis</it>-9, <it>trans</it>-11 CLA supplementation on circulating dyslipidemia and hepatic steatosis are enhanced by the addition of VA in the JCR:LA-<it>cp </it>rat.</p

    Normalization of a conversation tool to promote shared decision making about anticoagulation in patients with atrial fibrillation within a practical randomized trial of its effectiveness: a cross-sectional study.

    Get PDF
    BACKGROUND: Shared decision making (SDM) implementation remains challenging. The factors that promote or hinder implementation of SDM tools for use during the consultation, including contextual factors such as clinician burnout and organizational support, remain unclear. We explored these factors in the context of a practical multicenter randomized trial evaluating the effectiveness of an SDM conversation tool for patients with atrial fibrillation considering anticoagulation therapy. METHODS: In this cross-sectional study, we recruited clinicians who were regularly involved in conversations with patients regarding anticoagulation for atrial fibrillation. Clinicians reported their characteristics and burnout symptoms using the two-item Maslach Burnout Inventory. Clinicians were trained in using the SDM tool, and they recorded their perceptions of the tool's normalization potential using the Normalization MeAsure Development (NoMAD) survey instrument and verbally reflected on their answers to these survey questions. When possible, the training sessions and clinicians' verbal responses to the conversation tool were recorded. RESULTS: Our study comprised 183 clinicians recruited into the trial (168 with survey responses and 112 with recordings). Overall, clinicians gave high scores to the normalization potential of the intervention; they endorsed all domains of normalization to the same extent, regardless of site, clinician characteristics, or burnout ratings. In interviews, clinicians paid significant attention to making sense of the tool. Tool buy-in seemed to depend heavily on their ability to see the tool as accurate and "evidence-based" and their perceptions of having time in the consultation to use it. CONCLUSIONS: While time in the consultation remains a barrier, we did not find a significant association between burnout symptoms and normalization of an SDM conversation tool. Possible areas for improving the normalization of SDM conversation tools in clinical practice include enabling collaboration among clinicians to implement the tool and reporting how clinicians elsewhere use the tool. Direct measures of normalization (i.e., observing how often clinicians access the tool in practice outside of the clinical trial) may further elucidate the role that contextual factors, such as clinician burnout, play in the implementation of SDM. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02905032. Registered on 9 September 2016

    Opsin Repertoire and Expression Patterns in Horseshoe Crabs: Evidence from the Genome of Limulus polyphemus (Arthropoda: Chelicerata)

    Get PDF
    Horseshoe crabs are xiphosuran chelicerates, the sister groupto arachnids. As such, they are important for understandingthemost recent common ancestor of Euchelicerata and the evolution and diversification of Arthropoda. Limulus polyphemus is the most investigated of the four extant species of horseshoe crabs, and the structure and function of its visual system have long been a major focus of studies critical for understanding the evolution of visual systems in arthropods. Likewise, studies of genes encoding Limulus opsins, the protein component of the visual pigments, are critical for understanding opsin evolution and diversification among chelicerates, where knowledge of opsins is limited, and more broadly among arthropods. In the present study, we sequenced and assembled a high quality nuclear genomic sequence of L. polyphemus and used these data to annotate the full repertoire of Limulus opsins.Weconducted a detailed phylogenetic analysis of Limulus opsins, including using gene structure and synteny information to identify relationships among different opsin classes.We used our phylogeny to identify significant genomic events that shaped opsin evolution and therefore the visual systemof Limulus.We also describe the tissue expression patterns of the 18 opsins identified and show that transcripts encoding a number, including a peropsin, are present throughout the central nervous system. In additionto significantly extending our understanding of photosensitivity in Limulus and providing critical insight into the genomic evolution of horseshoe crab opsins, this work provides a valuable genomic resource for addressing myriad questions related to xiphosuran physiology and arthropod evolution

    Dynamic Computational Model Suggests That Cellular Citizenship Is Fundamental for Selective Tumor Apoptosis

    Get PDF
    Computational models in the field of cancer research have focused primarily on estimates of biological events based on laboratory generated data. We introduce a novel in-silico technology that takes us to the next level of prediction models and facilitates innovative solutions through the mathematical system. The model's building blocks are cells defined phenotypically as normal or tumor, with biological processes translated into equations describing the life protocols of the cells in a quantitative and stochastic manner. The essentials of communication in a society composed of normal and tumor cells are explored to reveal “protocols” for selective tumor eradication. Results consistently identify “citizenship properties” among cells that are essential for the induction of healing processes in a healthy system invaded by cancer. These properties act via inter-cellular communication protocols that can be optimized to induce tumor eradication along with system recovery. Within the computational systems, the protocols universally succeed in removing a wide variety of tumors defined by proliferation rates, initial volumes, and apoptosis resistant phenotypes; they show high adaptability for biological details and allow incorporation of population heterogeneity. These protocols work as long as at least 32% of cells obey extra-cellular commands and at least 28% of cancer cells report their deaths. This low percentage implies that the protocols are resilient to the suboptimal situations often seen in biological systems. We conclude that our in-silico model is a powerful tool to investigate, to propose, and to exercise logical anti-cancer solutions. Functional results should be confirmed in a biological system and molecular findings should be loaded into the computational model for the next level of directed experiments

    Genetic variants associated with fasting glucose and insulin concentrations in an ethnically diverse population: results from the Population Architecture using Genomics and Epidemiology (PAGE) study

    Get PDF
    Background: Multiple genome-wide association studies (GWAS) within European populations have implicated common genetic variants associated with insulin and glucose concentrations. In contrast, few studies have been conducted within minority groups, which carry the highest burden of impaired glucose homeostasis and type 2 diabetes in the U.S. Methods: As part of the 'Population Architecture using Genomics and Epidemiology (PAGE) Consortium, we investigated the association of up to 10 GWAS-identified single nucleotide polymorphisms (SNPs) in 8 genetic regions with glucose or insulin concentrations in up to 36,579 non-diabetic subjects including 23,323 European Americans (EA) and 7,526 African Americans (AA), 3,140 Hispanics, 1,779 American Indians (AI), and 811 Asians. We estimated the association between each SNP and fasting glucose or log-transformed fasting insulin, followed by meta-analysis to combine results across PAGE sites. Results: Overall, our results show that 9/9 GWAS SNPs are associated with glucose in EA (p = 0.04 to 9 × 10-15), versus 3/9 in AA (p= 0.03 to 6 × 10-5), 3/4 SNPs in Hispanics, 2/4 SNPs in AI, and 1/2 SNPs in Asians. For insulin we observed a significant association with rs780094/GCKR in EA, Hispanics and AI only. Conclusions: Generalization of results across multiple racial/ethnic groups helps confirm the relevance of some of these loci for glucose and insulin metabolism. Lack of association in non-EA groups may be due to insufficient power, or to unique patterns of linkage disequilibrium

    A new conceptual framework for the transformation of groundwater dissolved organic matter

    Get PDF
    Groundwater comprises 95% of the liquid fresh water on Earth and contains a diverse mix of dissolved organic matter (DOM) molecules which play a significant role in the global carbon cycle. Currently, the storage times and degradation pathways of groundwater DOM are unclear, preventing an accurate estimate of groundwater carbon sources and sinks for global carbon budgets. Here we reveal the transformations of DOM in aging groundwater using ultra-high resolution mass spectrometry combined with radiocarbon dating. Long-term anoxia and a lack of photodegradation leads to the removal of oxidised DOM and a build-up of both reduced photodegradable formulae and aerobically biolabile formulae with a strong microbial signal. This contrasts with the degradation pathway of DOM in oxic marine, river, and lake systems. Our findings suggest that processes such as groundwater extraction and subterranean groundwater discharge to oceans could result in up to 13 Tg of highly photolabile and aerobically biolabile groundwater dissolved organic carbon released to surface environments per year, where it can be rapidly degraded. These findings highlight the importance of considering groundwater DOM in global carbon budgets.Ye

    Climate Change, Human Health, and Resilience in the Holocene

    Get PDF
    Climate change is an indisputable threat to human health, especially for societies already confronted with rising social inequality, political and economic uncertainty, and a cascade of concurrent environmental challenges. Archaeological data about past climate and environment provide an important source of evidence about the potential challenges humans face and the long-term outcomes of alternative short-term adaptive strategies. Evidence from well-dated archaeological human skeletons and mummified remains speaks directly to patterns of human health over time through changing circumstances. Here, we describe variation in human epidemiological patterns in the context of past rapid climate change (RCC) events and other periods of past environmental change. Case studies confirm that human communities responded to environmental changes in diverse ways depending on historical, sociocultural, and biological contingencies. Certain factors, such as social inequality and disproportionate access to resources in large, complex societies may influence the probability of major sociopolitical disruptions and reorganizations—commonly known as “collapse.” This survey of Holocene human–environmental relations demonstrates how flexibility, variation, and maintenance of Indigenous knowledge can be mitigating factors in the face of environmental challenges. Although contemporary climate change is more rapid and of greater magnitude than the RCC events and other environmental changes we discuss here, these lessons from the past provide clarity about potential priorities for equitable, sustainable development and the constraints of modernity we must address

    Climate change, human health, and resilience in the Holocene

    Get PDF
    Climate change is an indisputable threat to human health, especially for societies already confronted with rising social inequality, political and economic uncertainty, and a cascade of concurrent environmental challenges. Archaeological data about past climate and environment provide an important source of evidence about the potential challenges humans face and the long-term outcomes of alternative short-term adaptive strategies. Evidence from well-dated archaeological human skeletons and mummified remains speaks directly to patterns of human health over time through changing circumstances. Here, we describe variation in human epidemiological patterns in the context of past rapid climate change (RCC) events and other periods of past environmental change. Case studies confirm that human communities responded to environmental changes in diverse ways depending on historical, sociocultural, and biological contingencies. Certain factors, such as social inequality and disproportionate access to resources in large, complex societies may influence the probability of major sociopolitical disruptions and reorganizations—commonly known as “collapse.” This survey of Holocene human–environmental relations demonstrates how flexibility, variation, and maintenance of Indigenous knowledge can be mitigating factors in the face of environmental challenges. Although contemporary climate change is more rapid and of greater magnitude than the RCC events and other environmental changes we discuss here, these lessons from the past provide clarity about potential priorities for equitable, sustainable development and the constraints of modernity we must address
    • 

    corecore