552 research outputs found
Herschel evidence for disk flattening or gas depletion in transitional disks
Transitional disks are protoplanetary disks characterized by reduced near-
and mid-infrared emission with respect to full disks. This characteristic
spectral energy distribution indicates the presence of an optically thin inner
cavity within the dust disk believed to mark the disappearance of the
primordial massive disk. We present new Herschel Space Observatory PACS spectra
of [OI] 63 micron for 21 transitional disks. Our survey complements the larger
Herschel GASPS program "Gas in Protoplanetary Systems" (Dent et al. 2013) by
quadrupling the number of transitional disks observed with PACS at this
wavelength. [OI] 63 micron traces material in the outer regions of the disk,
beyond the inner cavity of most transitional disks. We find that transitional
disks have [OI] 63 micron line luminosities two times fainter than their full
disk counterparts. We self consistently determine various stellar properties
(e.g. bolometric luminosity, FUV excess, etc.) and disk properties (e.g. disk
dust mass, etc.) that could influence the [OI] 63 micron line luminosity and we
find no correlations that can explain the lower [OI] 63 micron line
luminosities in transitional disks. Using a grid of thermo-chemical
protoplanetary disk models, we conclude that either transitional disks are less
flared than full disks or they possess lower gas-to-dust ratios due to a
depletion of gas mass. This result suggests that transitional disks are more
evolved than their full disk counterparts, possibly even at large radii.Comment: Accepted for publication in ApJ; 52 pages, 16 figures, 8 table
Uncertainties in water chemistry in disks: An application to TW Hya
Context. This paper discusses the sensitivity of water lines to chemical
processes and radiative transfer for the protoplanetary disk around TW Hya. The
study focuses on the Herschel spectral range in the context of new line
detections with the PACS instrument from the Gas in Protoplanetary Systems
project (GASPS). Aims. The paper presents an overview of the chemistry in the
main water reservoirs in the disk around TW Hya. It discusses the limitations
in the interpretation of observed water line fluxes. Methods. ... (abbreviated)
Results. We report new line detections of p-H2O (3_22-2_11) at 89.99 micron and
CO J=18-17 at 144.78 micron for the disk around TW Hya. Disk modeling shows
that the far-IR fine structure lines ([OI], [CII]) and molecular submm lines
are very robust to uncertainties in the chemistry, while the water line fluxes
can change by factors of a few. The water lines are optically thick,
sub-thermally excited and can couple to the background continuum radiation
field. The low-excitation water lines are also sensitive to uncertainties in
the collision rates, e.g. with neutral hydrogen. The gas temperature plays an
important role for the [OI] fine structure line fluxes, the water line fluxes
originating from the inner disk as well as the high excitation CO, CH+ and OH
lines. Conclusions. Due to their sensitivity on chemical input data and
radiative transfer, water lines have to be used cautiously for understanding
details of the disk structure. Water lines covering a wide range of excitation
energies provide access to the various gas phase water reservoirs (inside and
outside the snow line) in protoplanetary disks and thus provide important
information on where gas-phase water is potentially located. Experimental
and/or theoretical collision rates for H2O with atomic hydrogen are needed to
diminish uncertainties from water line radiative transfer.Comment: accepted for publication in A&
Modular Acquisition and Stimulation System for Timestamp-Driven Neuroscience Experiments
Dedicated systems are fundamental for neuroscience experimental protocols
that require timing determinism and synchronous stimuli generation. We
developed a data acquisition and stimuli generator system for neuroscience
research, optimized for recording timestamps from up to 6 spiking neurons and
entirely specified in a high-level Hardware Description Language (HDL). Despite
the logic complexity penalty of synthesizing from such a language, it was
possible to implement our design in a low-cost small reconfigurable device.
Under a modular framework, we explored two different memory arbitration schemes
for our system, evaluating both their logic element usage and resilience to
input activity bursts. One of them was designed with a decoupled and latency
insensitive approach, allowing for easier code reuse, while the other adopted a
centralized scheme, constructed specifically for our application. The usage of
a high-level HDL allowed straightforward and stepwise code modifications to
transform one architecture into the other. The achieved modularity is very
useful for rapidly prototyping novel electronic instrumentation systems
tailored to scientific research.Comment: Preprint submitted to ARC 2015. Extended: 16 pages, 10 figures. The
final publication is available at link.springer.co
Accretion variability of Herbig Ae/Be stars observed by X-Shooter. HD 31648 and HD 163296
This work presents X-Shooter/VLT spectra of the prototypical, isolated Herbig
Ae stars HD 31648 (MWC 480) and HD 163296 over five epochs separated by
timescales ranging from days to months. Each spectrum spans over a wide
wavelength range covering from 310 to 2475 nm. We have monitored the continuum
excess in the Balmer region of the spectra and the luminosity of twelve
ultraviolet, optical and near infrared spectral lines that are commonly used as
accretion tracers for T Tauri stars. The observed strengths of the Balmer
excesses have been reproduced from a magnetospheric accretion shock model,
providing a mean mass accretion rate of 1.11 x 10^-7 and 4.50 x 10^-7 Msun
yr^-1 for HD 31648 and HD 163296, respectively. Accretion rate variations are
observed, being more pronounced for HD 31648 (up to 0.5 dex). However, from the
comparison with previous results it is found that the accretion rate of HD
163296 has increased by more than 1 dex, on a timescale of ~ 15 years. Averaged
accretion luminosities derived from the Balmer excess are consistent with the
ones inferred from the empirical calibrations with the emission line
luminosities, indicating that those can be extrapolated to HAe stars. In spite
of that, the accretion rate variations do not generally coincide with those
estimated from the line luminosities, suggesting that the empirical
calibrations are not useful to accurately quantify accretion rate variability.Comment: 14 pages, 7 Figures, Accepted in Ap
Herschel GASPS spectral observations of T Tauri stars in Taurus: unraveling far-infrared line emission from jets and discs
At early stages of stellar evolution young stars show powerful jets and/or
outflows that interact with protoplanetary discs and their surroundings.
Despite the scarce knowledge about the interaction of jets and/or outflows with
discs, spectroscopic studies based on Herschel and ISO data suggests that gas
shocked by jets and/or outflows can be traced by far-IR (FIR) emission in
certain sources. We want to provide a consistent catalogue of selected atomic
([OI] and [CII]) and molecular (CO, OH, and HO) line fluxes observed in
the FIR, separate and characterize the contribution from the jet and the disc
to the observed line emission, and place the observations in an evolutionary
picture. The atomic and molecular FIR (60-190 ) line emission of
protoplanetary discs around 76 T Tauri stars located in Taurus are analysed.
The observations were carried out within the Herschel key programme Gas in
Protoplanetary Systems (GASPS). The spectra were obtained with the
Photodetector Array Camera and Spectrometer (PACS). The sample is first divided
in outflow and non-outflow sources according to literature tabulations. With
the aid of archival stellar/disc and jet/outflow tracers and model predictions
(PDRs and shocks), correlations are explored to constrain the physical
mechanisms behind the observed line emission. The much higher detection rate of
emission lines in outflow sources and the compatibility of line ratios with
shock model predictions supports the idea of a dominant contribution from the
jet/outflow to the line emission, in particular at earlier stages of the
stellar evolution as the brightness of FIR lines depends in large part on the
specific evolutionary stage. [Abridged Abstract]Comment: 37 pages, 27 figures, accepted for publication in A&
Evolution of brown dwarf disks: A Spitzer survey in Upper Scorpius
We have carried out a Spitzer survey for brown dwarf (BD) disks in the ~5 Myr
old Upper Scorpius (UpSco) star forming region, using IRS spectroscopy from 8
to 12\mu m and MIPS photometry at 24\mu m. Our sample consists of 35 confirmed
very low mass members of UpSco. Thirteen objects in this sample show clear
excess flux at 24\mu m, explained by dust emission from a circum-sub-stellar
disk. Objects without excess emission either have no disks at all or disks with
inner opacity holes of at least ~5 AU radii. Our disk frequency of 37\pm 9% is
higher than what has been derived previously for K0-M5 stars in the same region
(on a 1.8 sigma confidence level), suggesting a mass-dependent disk lifetime in
UpSco. The clear distinction between objects with and without disks as well as
the lack of transition objects shows that disk dissipation inside 5 AU occurs
rapidly, probably on timescales of <~10^5 years. For the objects with disks,
most SEDs are uniformly flat with flux levels of a few mJy, well modeled as
emission from dusty disks affected by dust settling to the midplane, which also
provides indirect evidence for grain growth. The silicate feature around 10\mu
m is either absent or weak in our SEDs, arguing for a lack of hot, small dust
grains. Compared with younger objects in Taurus, BD disks in UpSco show less
flaring. Taken together, these results clearly demonstrate that we see disks in
an advanced evolutionary state: Dust settling and grain growth are ubiquituous
in circum-sub-stellar disks at ages of 5 Myr, arguing for planet forming
processes in BD disks. For almost all our targets, results from high-resolution
spectroscopy and high-spatial resolution imaging have been published before,
thus providing a large sample of BDs for which information about disks,
accretion, and binarity is available. (abridged)Comment: 39 pages, 7 figures, accepted for publication in Ap
A Co(TAML)-based artificial metalloenzyme for asymmetric radical-type oxygen atom transfer catalysis
We show that the incorporation of a biotinylated Co(TAML) cofactor within streptavidin enables asymmetric radical-type oxygen atom transfer catalysis with improved activity and enantioselectivity.</p
Evolution of Young Brown Dwarf Disks in the Mid-Infrared
We have imaged two bona-fide brown dwarfs with TReCS/GEMINI-S and find
mid-infrared excess emission that can be explained by optically thick dust disk
models. In the case of the young (2Myr) Cha H1 we measure
fluxes at 10.4m and 12.3m that are fully consistent with a standard
flared disk model and prominent silicate emission. For the 10Myr old
brown dwarf 2MASS1207-3932 located in the TW Hydrae association we find excess
emission at 8.7m and 10.4m with respect to its photosphere, and
confirm disk accretion as likely cause of its strong activity. Disks around
brown dwarfs likely last at least as long as their low-mass stellar
counterparts in the T-Tauri phase. Grain growth, dust settling, and evolution
of the geometry of brown dwarfs disks may appear on a timescale of 10Myr and
can be witnessed by observations in the mid-infrared.Comment: 6 pages, 4 figure
- …