172 research outputs found

    Significant association between circumvallate placenta, placental abruption and acute chorioamnionitis in preterm birth:A 23-year retrospective cohort study

    Get PDF
    Aim:circumvallate placenta, placental abruption and acute chorioamnionitis separately are associated with unfavourable clinical outcomes. We aimed to determine the prevalence and define whether an association exists between the three abnormalities. Methods: 16,042 placenta pathology reports between 1997 and 2020 from a tertiary care centre in the Netherlands were retrospectively analysed. For the statistical analysis, the chi-square test and bootstrapping were used to evaluate an association. Results: In our cohort the prevalence of circumvallate placenta is 2.2 %, placental abruption cases 4.0 % and acute chorioamnionitis 20.6 %. We observed a statistically significant association between all three placental abnormalities: circumvallate placenta, placental abruption and acute chorioamnionitis. In addition, there was also an association between circumvallate placenta and acute chorioamnionitis. Conclusion: Our results show that combined presence of circumvallate placenta, placental abruption and acute chorioamnionitis are associated in preterm birth (p = 0.001). A remarkable finding is that the combination of all three abnormalities (circumvallate placenta, placental abruption and acute chorioamnionitis) was not observed in term pregnancies &gt;37 weeks.</p

    An order-theoretic characterization of the Howard-Bachmann-hierarchy

    Get PDF
    In this article we provide an intrinsic characterization of the famous Howard-Bachmann ordinal in terms of a natural well-partial-ordering by showing that this ordinal can be realized as a maximal order type of a class of generalized trees with respect to a homeomorphic embeddability relation. We use our calculations to draw some conclusions about some corresponding subsystems of second order arithmetic. All these subsystems deal with versions of light-face Π₁¹-comprehension

    Effects of fibrillin mutations on the behavior of heart muscle cells in Marfan syndrome

    Get PDF
    Abstract: Marfan syndrome (MFS) is a systemic disorder of connective tissue caused by pathogenic variants in the fibrillin-1 (FBN1) gene. Myocardial dysfunction has been demonstrated in MFS patients and mouse models, but little is known about the intrinsic effect on the cardiomyocytes (CMs). In this study, both induced pluripotent stem cells derived from a MFS-patient and the line with the corrected FBN1 mutation were differentiated to CMs. Several functional analyses are performed on this model to study MFS related cardiomyopathy. Atomic force microscopy revealed that MFS CMs are stiffer compared to corrected CMs. The contraction amplitude of MFS CMs is decreased compared to corrected CMs. Under normal culture conditions, MFS CMs show a lower beat-to-beat variability compared to corrected CMs using multi electrode array. Isoproterenol-induced stress or cyclic strain demonstrates lack of support from the matrix in MFS CMs. This study reports the first cardiac cell culture model for MFS, revealing abnormalities in the behavior of MFS CMs that are related to matrix defects. Based on these results, we postulate that impaired support from the extracellular environment plays a key role in the improper functioning of CMs in MFS

    A robust and standardized method to isolate and expand mesenchymal stromal cells from human umbilical cord

    Get PDF
    Background aimsHuman umbilical cord–derived mesenchymal stromal cells (hUC-MSCs) are increasingly used in research and therapy. To obtain hUC-MSCs, a diversity of isolation and expansion methods are applied. Here, we report on a robust and standardized method for hUC-MSC isolation and expansion.MethodsUsing 90 hUC donors, we compared and optimized critical variables during each phase of the multi-step procedure involving UC collection, processing, MSC isolation, expansion and characterization. Furthermore, we assessed the effect of donor-to-donor variability regarding UC morphology and donor attributes on hUC-MSC characteristics.ResultsWe demonstrated robustness of our method across 90 UC donors at each step of the procedure. With our method, UCs can be collected up to 6 h after birth, and UC-processing can be initiated up to 48 h after collection without impacting on hUC-MSC characteristics. The removal of blood vessels before explant cultures improved hUC-MSC purity. Expansion in Minimum essential medium α supplemented with human platelet lysate increased reproducibility of the expansion rate and MSC characteristics as compared with Dulbecco's Modified Eagle's Medium supplemented with fetal bovine serum. The isolated hUC-MSCs showed a purity of ∼98.9%, a viability of >97% and a high proliferative capacity. Trilineage differentiation capacity of hUC-MSCs was reduced as compared with bone marrow-derived MSCs. Functional assays indicated that the hUC-MSCs were able to inhibit T-cell proliferation demonstrating their immune-modulatory capacity.ConclusionsWe present a robust and standardized method to isolate and expand hUC-MSCs, minimizing technical variability and thereby lay a foundation to advance reliability and comparability of results obtained from different donors and different studies.Molecular Epidemiolog

    Marine Citizen Science: Current State in Europe and New Technological Developments

    Get PDF
    Marine citizen science is emerging with promising opportunities for science, policy and public but there is still no comprehensive overview of the current state in Europe. Based on 127 projects identified for the North Sea area we estimate there might be as much as 500 marine and coastal citizen science projects running in Europe, i.e., one marine citizen science project per 85 km of coastline, with an exponential growth since 1990. Beach-based projects are more accessible and hence most popular (60% of the projects), and the mean duration of the projects is 18–20 years. Current trends, topics, organizers, aims, and types of programme in terms of participation are presented in this overview. Progress in marine citizen science is specially enabled and promoted through technological developments. Recent technological advances and best practise examples are provided here, untapping the potential of smart mobile apps, do-it-yourself (DIY) technologies, drones, and artificial intelligence (AI) web servicesVersión del edito

    Placental complement activation in fetal and neonatal alloimmune thrombocytopenia: an observational study

    Get PDF
    Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is a disease that causes thrombocytopenia and a risk of bleeding in the (unborn) child that result from maternal alloantibodies directed against fetal, paternally inherited, human platelet antigens (HPA). It is hypothesized that these alloantibodies can also bind to the placenta, causing placental damage. This study aims to explore signs of antibody-mediated placental damage in FNAIT. We performed a retrospective study that included pregnant women, their newborns, and placentas. It comprised 23 FNAIT cases, of which nine were newly diagnosed (14 samples) and 14 were antenatally treated with intravenous immune globulins (IVIg) (21 samples), and 20 controls, of which 10 had anti-HLA-class I antibodies. Clinical information was collected from medical records. Placental samples were stained for complement activation markers (C1q, C4d, SC5b-9, and mannose-binding lectin) using immunohistochemistry. Histopathology was examined according to the Amsterdam criteria. A higher degree of C4d deposition was present in the newly diagnosed FNAIT cases (10/14 samples), as compared to the IVIg-treated FNAIT cases (2/21 samples, p = 0.002) and anti-HLA-negative controls (3/20 samples, p = 0.006). A histopathological examination showed delayed maturation in four (44%) placentas in the newly diagnosed FNAIT cases, five (36%) in the IVIg-treated FNAIT cases, and one in the controls (NS). C4d deposition at the syncytiotrophoblast was present in combination with low-grade villitis of unknown etiology in three newly diagnosed FNAIT cases that were born SGA. We conclude that a higher degree of classical pathway-induced complement activation is present in placentas from pregnancies with untreated FNAIT. This may affect placental function and fetal growth.Developmen

    Twisting the theory on the origin of human umbilical cord coiling featuring monozygotic twins

    Get PDF
    The human umbilical cord (hUC) is the lifeline that connects the fetus to the mother. Hypercoiling of the hUC is associated with pre- and perinatal morbidity and mortality. We investigated the origin of hUC hypercoiling using state-of-the-art imaging and omics approaches. Macroscopic inspection of the hUC revealed the helices to originate from the arteries rather than other components of the hUC. Digital reconstruction of the hUC arteries showed the dynamic alignment of two layers of muscle fibers in the tunica media aligning in opposing directions. We observed that genetically identical twins can be discordant for hUC coiling, excluding genetic, many environmental, and parental origins of hUC coiling. Comparing the transcriptomic and DNA methylation profile of the hUC arteries of four twin pairs with discordant cord coiling, we detected 28 differentially expressed genes, but no differentially methylated CpGs. These genes play a role in vascular development, cell-cell interaction, and axis formation and may account for the increased number of hUC helices. When combined, our results provide a novel framework to understand the origin of hUC helices in fetal development.</p

    Twisting the theory on the origin of human umbilical cord coiling featuring monozygotic twins

    Get PDF
    The human umbilical cord (hUC) is the lifeline that connects the fetus to the mother. Hypercoiling of the hUC is associated with pre- and perinatal morbidity and mortality. We investigated the origin of hUC hypercoiling using state-of-the-art imaging and omics approaches. Macroscopic inspection of the hUC revealed the helices to originate from the arteries rather than other components of the hUC. Digital reconstruction of the hUC arteries showed the dynamic alignment of two layers of muscle fibers in the tunica media aligning in opposing directions. We observed that genetically identical twins can be discordant for hUC coiling, excluding genetic, many environmental, and parental origins of hUC coiling. Comparing the transcriptomic and DNA methylation profile of the hUC arteries of four twin pairs with discordant cord coiling, we detected 28 differentially expressed genes, but no differentially methylated CpGs. These genes play a role in vascular development, cell-cell interaction, and axis formation and may account for the increased number of hUC helices. When combined, our results provide a novel framework to understand the origin of hUC helices in fetal development.</p
    corecore