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Twisting the theory on the origin of human umbilical cord
coiling featuring monozygotic twins
Pia Todtenhaupt1 , Thomas B Kuipers1,2 , Kyra L Dijkstra3, Lenard M Voortman4 , Laura A Franken1 , Jip A Spekman5,
Thomas H Jonkman1, Sophie G Groene5 , Arno AW Roest6 , Monique C Haak7 , EJoanne T Verweij7, Melissa van Pel8,9,
Enrico Lopriore5, Bastiaan T Heijmans1 , Lotte E van der Meeren3,10

The human umbilical cord (hUC) is the lifeline that connects the
fetus to the mother. Hypercoiling of the hUC is associated with
pre- and perinatal morbidity and mortality. We investigated the
origin of hUC hypercoiling using state-of-the-art imaging and
omics approaches. Macroscopic inspection of the hUC revealed
the helices to originate from the arteries rather than other
components of the hUC. Digital reconstruction of the hUC arteries
showed the dynamic alignment of two layers of muscle fibers in
the tunica media aligning in opposing directions. We observed
that genetically identical twins can be discordant for hUC coiling,
excluding genetic, many environmental, and parental origins of
hUC coiling. Comparing the transcriptomic and DNA methylation
profile of the hUC arteries of four twin pairs with discordant cord
coiling, we detected 28 differentially expressed genes, but no
differentially methylated CpGs. These genes play a role in vas-
cular development, cell–cell interaction, and axis formation and
may account for the increased number of hUC helices. When
combined, our results provide a novel framework to understand
the origin of hUC helices in fetal development.
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Introduction

The genesis of the umbilical cord helices remains an elusive
phenomenon in fetal development. The human umbilical cord
(hUC) supplies nutrients and oxygen to the fetus and is indis-
pensable for the adequate development of the fetus. The hUC
develops 4–6 wk post-conception. It is mainly composed of the
connective tissue, Wharton’s jelly, which supports and protects two
umbilical arteries, and one umbilical vein (1). The umbilical vein

transports nutrients and oxygen from the placenta toward the
fetus, whereas in the umbilical arteries, the deoxygenated blood
with waste materials flows from the fetus to the placenta (2). The
presence of helices in the hUC was noted as early as 1,521 (2). A helix
is a twisted, three-dimensional spiral shape. Over the years, syn-
onyms such as coils, spirals, and turns were introduced and used as
analogues. Helices in the hUC arise at an early stage of develop-
ment. In week 7 of gestation, ~95% of the fetuses have developed
the helices, whereas ~5% of the hUCs remain un- or hypocoiled
(1, 3, 4). Even though the hUC elongates, the number of helices does
not change for the remaining gestation (4). Thus far, the origin of the
helices themselves and the intensity of coiling remain unclear.

Insight into the origin of the helices is important because
hypercoiling is strongly associated with adverse pre- and postnatal
clinical outcomes (5, 6, 7). In 1994, Strong et al proposed a stan-
dardized metric to quantify hUC helices, the umbilical coiling index
(UCI), which is defined as the number of helices per centimeter of
the hUC and is irrespective of the helix direction (8, 9, 10, 11). In
uncomplicated pregnancies, the average UCI lies around 0.17
helices/cm with the 10th and 90th centiles at 0.07 and 0.3 helices/
cm, respectively, and the hUC is categorized as normocoiled (1, 12).
When the number of helices exceeds 3 helices per 10 cm, the hUC is
defined as hypercoiled.

Numerous studies linked an abnormal hUC coiling intensity to
pre- and perinatal morbidity and mortality (5, 6, 7, 13, 14).
Hypercoiling is associated with fetal growth restriction and fetal
distress resulting in (planned) premature delivery, a decreased
Apgar score at 5 min, or even fetal demise (6, 7). Hypercoiling can
also lead to umbilical vascular compression and reduced fetal
blood flow, which in turn may result in parenchymal abnor-
malities such as fetal thrombosis in the hUC vessels, chorionic
plate, and (stem) villi, creating a higher risk of prenatal and
perinatal morbidity and mortality (15). These findings underline
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the urgency to further explore the origin of the helices and
thereby the adverse pregnancy outcomes. However, research
into the origin of coiling stagnated in the 90s of the last century
after several hypotheses on the development of helices were
introduced and subsequently shelved or invalidated (1). State-
of-the-art imaging and molecular approaches, which were un-
available during the initial wave of studies, have the potential to
alter this situation.

In this study, we investigated the histology of hypercoiled
hUCs using digital reconstruction and investigated the basis of
the hUC helices in newborn identical twin pairs discordant for
their hUC coiling index. Identical twin pairs share their genome,
sex, parental factors, and most of the intrauterine environ-
mental factors, minimizing confounding when comparing hy-
per- and normocoiled hUCs. To define the molecular signature
and origin of hUC helices, we generated transcriptomic data
using RNA-seq and genome-wide epigenetic data using DNA
methylation array profiling >700 1000 locations throughout the
genome.

Results

Clinical and macroscopic hUC characteristics of MZ twin pairs
discordant for coiling

Within a period of 6 mo, we identified four MZ twin pairs with a
macroscopically visible difference in coiling index further referred
to as a discordant hUC (Fig 1A). The individuals of the MZ twin pair
with a hypercoiled hUC (classified as cases, UCI between 0.3 and
0.45), whereas the hUC of the other sibling was normocoiled
(classified as controls, UCI between 0.09 and 0.29). The length of the
hUC was comparable between the individuals of each of the four
twin pairs and was within normal limits (30–70 cm) (9, 16). The
helical pattern was evenly distributed throughout the hUC. We did
not observe increased morbidity in the twin with the hypercoiled
umbilical cord compared with its co-twin. The twin pairs were born
at a gestational age ranging from 29 to 36 wk, with an equal dis-
tribution of male (2) and female (2) (Table S1). The arteries were
retrieved from four MZ twin pairs, in total eight hUCs. Remarkably,

Figure 1. Overview of the included umbilical
cords.
(A) Overview of the included umbilical cords and
coiling. Hypercoiling is defined by an umbilical
cord coiling index > 0.3; genetically, controls
have an umbilical coiling index < 0.3. The scale bar
indicates 1 cm. (B) Example of the isolated arteries
from each condition; hypercoiled (right),
control (left). (C) Hematoxylin and eosin staining
of longitudinal cross sections of hyper- and
normocoiled umbilical arteries. The umbilical
arteries consist of two muscle fiber layers, the
outer layer (OL) and the inner layer (IL). Themiddle
dashed line indicates the course of the lumen
(L). Left: normal coiled umbilical artery; the scale
bar indicates 500 μM. Right: hypercoiled umbilical
artery; the scale bar indicates 1 mm.
Source data are available for this figure.
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the helices were retained in each of the two arteries upon removal.
The remaining hUCs containing Wharton’s jelly and the umbilical
vein exhibit no inherent coiling, suggesting that the source of
umbilical cord coiling originates solely from the umbilical cord
arteries (Fig 1B and C).

Histological evaluation of the arterial muscle layers

Given that the arteries seem to play an essential role in coiling, we
performed histological evaluation of the umbilical arteries. H&E-
stained cross sections of the isolated arteries revealed three an-
atomical structures from the outer layer, the tunica adventitia, the
tunica media, and the tunica intima with an epithelium layer on the
luminal side. Furthermore, we observed within the tunica media of
the umbilical artery two distinct muscle layers aligned in opposite
directions, whereas all other arteries in the human body are known
to be composed of a single muscle cell layer (Fig 2). As the H&E and
Van Gieson’s stainings were not able to quantify and visualize the
fibers in multiple directions, we constructed a serial animation
of 100 consecutive H&E slides of a hypercoiled artery to assess
and evaluate the dynamic alignment of both the inner and outer
muscle layers. With this approach, we observed the movement of
both muscle layers in opposite crossing directions (Video 1).
Contrarily, the wall of the vein originating from a hypercoiled
umbilical cord consists of a single layer of circular muscle fibers
aligned solely in one direction (Fig 2). Hence, it is plausible that
the number of helices per cmmay be attributed to the difference
in muscle fiber alignment of the two separate layers of the
arterial muscle wall.

Hypercoiled umbilical cord arteries display a distinct
transcriptomic profile

To gain insight into themolecular distinctions in the arterial muscle
tissue involved in the increased formation of helices, tran-
scriptomic data of the hUC arteries (n = 8) were generated. Com-
paring the gene expression of hypercoiled and normocoiled hUC
arteries, 28 genes were significantly differentially expressed (PFDR >
0.05; Fig 3A and Table S2). In hypercoiled arteries, 16 of the 28 genes
were up-regulated (log2 fold change: 0.5–1.9), whereas 12 of the 28
genes were down-regulated (log2 fold change: −0.6 to −2.4) as
compared to normocoiled arteries (Fig 3B).

Figure 2. Umbilical cord artery and vein muscle fiber alignment.
Hematoxylin and eosin and Van Gieson’s staining of the artery and vein derived
from a hypercoiled umbilical cord. The umbilical artery wall (intima–media)
consists of two layers of muscle fibers, the outer layer (OL) and the inner layer (IL),
aligned in crossing directions. The wall of the umbilical vein consists of one
outer layer, a circular muscle fiber in one direction. L, lumen. The scale bar
indicates 1 mm.
Source data are available for this figure.

Figure 3. Overview of the differential gene expression between hypercoiled
and control arteries.
(A) Volcano plot displaying a gene expression fold change between hypercoiled
and normocoiled arteries. Genes that are up-regulated (PFDR < 0.05) are shown in
red. Genes down-regulated are shown in blue. Non-significantly changed
genes (PFDR > 0.05) are displayed in gray. (B) Normalized read counts of the top
eight most significantly differentially expressed genes and KLF4. Twin pairs of
family 1–4 are depicted in dark green, orange, light blue, and dark red,
respectively.
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Pathway enrichment analysis of genes associated with
hypercoiling

To explore the biological processes represented by the differen-
tially expressed genes in normo- and hypercoiled hUC arterial
tissues, a gene set enrichment analysis was performed. Enrichment
was observed for small leucine-rich proteoglycan molecules, cell
differentiation, and response to laminar shear stress (Fig S1A). Most
of the enriched processes (13 of 23) contained the up-regulated
transcription factors KLF2 and/or KLF4 (Fig S1B).

As the function of the genes showing transcriptomic differences
between hypercoiled and normocoiled hUC arterial tissues may not
be fully captured by processes as they were previously specified in
databases, we manually annotated the function of differentially
expressed genes using published work. We found that 9 of 28 genes
were involved in vessel formation (KLF2, CDH2, CCL3, CEBPD, DLL4,
LUM, DCN, ENPEP, and CHRDL1), 6 of 28 were involved in inflam-
matory responses (CXCL2, KLF4, ZFP36, CCL3, CEBPD, and LUM), four
were leucine-rich repeat–containing proteins (LUM, DCN, ASPN, and
LRRC8A), and two genes determine axis formation by guiding the
left–right patterning (LEFTY2 and CDH2) (Fig 4A and B and Table 1).
Collectively, our functional annotation links the transcriptomic
profile of hypercoiled hUC arteries to aspects of processes influ-
encing the alignment of muscle cells, thereby contributing to the
hUC coiling index.

Gene expression changes in hypercoiled arteries are not present
in hUC-MSCs

To further probe whether the observed changes in gene expression
are restricted to the hUC arterial tissue or reside more globally, we
inspected the gene expression profile of a cell type isolated from
Wharton’s jelly of the hUC, human umbilical cord mesenchymal
stromal cells (hUC-MSCs). No genes were found to be differentially
expressed, when comparing the transcriptomic profile in hUC-MSCs
of the four twin pairs discordant for coiling. Seven of the 28 genes
differentially expressed in the hUC arterial tissue were not
expressed in hUC-MSCs, and the remaining 21 genes are not among
the transcripts on the lower end of detected P-values (0.92 > PFDR >
0.07; Fig S2). This may indicate that the observed transcriptomic
profile is specific to the isolated hUC arterial muscle fiber tissue.

Arterial DNA methylation signature remains unchanged upon
hypercoiling

To investigate whether epigenetic changes underlie the discor-
dance in gene expression between hyper- and normocoiled um-
bilical arteries, a genome-wide DNA methylation profile of the hUC
arterial tissue was established for each individual of the four MZ
twin pairs discordant for coiling (729,706 CpGs). None of the
measured CpG sites displayed a differential methylation level when

Figure 4. Schematic overview of the function
and interaction of differentially expressed
genes between hypercoiled and control
umbilical arteries.
(A) Interaction of a selected differentially
expressed gene set between hypercoiled/case
and normocoiled/control umbilical arteries.
Numbers assigned to the genes and
interactions correspond to Table 1, containing a
description of the function and interaction of each
gene. Genes that are overexpressed are
depicted in a red box (PFDR < 0.05). Genes that are
down-regulated are depicted in a blue box. Arrows
indicate a positive regulatory correlation found
in previous studies. The inhibitory arrow indicates
a negative regulatory correlation found in previous
studies. (B) Most frequently occurring
functional terms in the manual exploration of the
differentially expressed genes including genes
related to the term. Several genes are shared
between different functional terms. The size of
the cycles corresponds to the number of genes
related to the functional term. This list is a
selection of identified functions and interactions
and does not contain a complete list of all
published functions and interactions.
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Table 1. Function and interactions of differentially expressed genes
between hypercoiled and control umbilical arteries.

1

KLF2 is a key regulator of multiple endothelial functions,
maintaining a healthy endothelium (17, 18). KLF2-null
mouse embryos show incomplete vascular maturation
through insufficient migration of mural cells to the arterial
wall (19). Although in the absence of KLF2, full vessel
maturation is impaired, primary vasculogenesis is not
affected (20). Shear stress–medicated actin cytoskeleton
remodeling is KLF2-dependent in endothelial cells. KLF2-
induced actin shear fibers facilitate endothelial cell
alignment in the direction of the flow (21).

2
Transforming growth factor-β–related factor, LEFTY2, acts
as an asymmetric signaling molecule by antagonizing the
duration and site of the left-side determinant NODAL (22).

3
Lentiviral-mediated overexpression of KLF2 in human
umbilical vein endothelial cells results in down-regulation
of LEFTY2 (21).

4 IL-1β–mediated increase in CXCL2 is muted by KLF2 in
human umbilical vein endothelial cells (18).

5

CXCL2 is a pro-inflammatory chemokine playing a role in the
development of cardiovascular diseases (18, 23). The
overexpression of CXCL2 can lead to vascular endothelial cell
damage in blood vessels through the activation of
neutrophils. Furthermore, CXCL2 plays a role in reorganization
of the cytoskeleton, cell migration, adhesion, and immune
response and is associated with atherosclerosis, diabetes,
obesity, and myocardial infarction (23).

6
Lentiviral-mediated overexpression of KLF2 in human
umbilical vein endothelial cells results in down-regulation
of CDH2 (21).

7

CDH2 (N-cadherin) promotes angiogenesis and enhances
the stability of blood vessels by acting as a cell–cell
adhesion molecule to enhance the interaction between
endothelial cells and mural cells (24, 25). Furthermore,
CDH2 plays a role in establishing the left–right axis during
development, independent of LEFTY and NODAL. Blocking
CDH2 function during development of chicken embryos
randomizes heart looping (26).

8

KLF4 orchestrates transcriptional programs as a key
regulator of multiple endothelial functions ensuring an
anti-inflammatory and antithrombotic endothelial
phenotype (together with KLF2) (17, 27).

9

In endothelial cells, more than 40% of the genes regulated
by KLF2 are similarly regulated by KLF4 (27). The adenoviral-
mediated overexpression of KLF4 in endothelial cells
results in down-regulation of KLF2 (27).

10 Adenoviral-mediated overexpression of KLF4 in
endothelial cells results in down-regulation of CDH2 (27).

11 Adenoviral-mediated overexpression of KLF4 in
endothelial cells results in up-regulation of ZFP36 (27).

12

ZFP36 (TTP) is an RNA-binding protein, guiding pro-
inflammatory cytokine mRNA for degradation or regulating
their translation and thereby decreasing pro-inflammatory
responses (28, 29).

13 CXCL2 was identified as a ZFP36 target in mouse
macrophages (29).

14 CCL3 was identified as a ZFP36 target in mouse
macrophages and fibroblasts (29)

(Continued on following page)

Table 1. Continued

15

CCL3 ormacrophage inflammatory protein α (MIP-1α) is a pro-
inflammatory chemokine (30). It has been identified as an
angiogenic factor in osteosarcoma, where it plays a role in
inducing endothelial progenitor cell migration and tube
formation (31).

16 Adenoviral-mediated overexpression of KLF4 in
endothelial cells results in up-regulation of CEBPD (27).

17

CEBPD is part of the CCAAT/enhancer-binding protein
family and plays a role in differentiation, metabolism,
immune response, and inflammatory disease. CEBPD
promotes proliferation, migration, and in vitro tube
formation of human umbilical vein endothelial cells and
thereby contributes to angiogenesis (32).

18 DLL4 levels were decreased upon KLF4 overexpression in
the mouse retinal angiogenesis model (33).

19

DLL4 was shown to be predominantly expressed in
vascular endothelium and at active sites of angiogenesis
(34, 35). In the umbilical cord, DLL4 is solely expressed in
the umbilical arteries but not in the umbilical vein (34). In
mice, deletion of DLL4 results in abnormal artery
development and defective arterial branching (36).

20 NPR3 was shown to be down-regulated upon KLF4
overexpression in a transfected colon cancer cell line (37).

21

NPR3/NPR-c functions as a clearance receptor for
natriuretic peptides, thereby reducing blood pressure (38).
NPR3 is among others expressed in endothelial cells,
vascular smooth muscle cells, and endocardial cells (39).

22 LUM was shown to be down-regulated upon KLF4
overexpression in a transfected colon cancer cell line (37).

23

LUM is a small leucine-rich proteoglycan that plays a key
role in the regulation of the stromal collagen matrix. LUM
has been associated with cell migration and proliferation
during embryonic development and inflammatory
responses (40). Lumican was also shown to antagonize
angiogenesis by inhibiting endothelial cell angiogenic
sprouting and invasion (41).

24

DCN and LUM are both members of the family of small
leucine-rich proteoglycans and share multiple
functions related to the maintenance of tissue
homeostasis, and have both been identified to inhibit
angiogenesis (40, 41).

25

DCN is a small leucine-rich proteoglycan (40). DCN is a
structural component of the extracellular matrix and acts
as a pro-angiogenic factor by supporting endothelial cell
adhesion to type I collagen and α1β2-integrin. On the
contrary, DCN has been shown to antagonize angiogenesis
in the context of tumorigenesis-associated angiogenesis
and inflammatory processes (42, 43).

26 ASPN is a member of the leucine-rich repeat protein family like
DCN and LUM. ASPN is similar and closely related to DCN (44).

27 LRRC8A is like ASPN, LUM, and DCN a leucine-rich repeat
protein (45).

28

ASPN is a member of the leucine-rich repeat protein
family that is expressed among others in the aorta and
tissues with large abundance of smooth muscle cells
(44). ASPN is an extracellular matrix protein, can bind
directly to type I collagen, and contributes to collagen
fibrillogenesis (46).

(Continued on following page)
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comparing hypercoiled and normocoiled hUC arteries (Table S3 and
Fig S3A and B). The 10 CpGs with the lowest P-value signifying the
largest difference in the methylation level from the comparison
(PFDR > 0.68) mapped to the body of genes that are involved in a
heterogeneous set of biological processes (Table 2). The CpGs lo-
cated in proximity to the genes differentially expressed in the hUC
arterial tissue showed no indication of differential methylation (Fig
S4). Taken together, the observed differential gene expression
between hypercoiled and normocoiled umbilical arteries did not
coincide with differences in the methylome.

Discussion

Several hypotheses regarding the origin of cord coiling have thus
far been proposed. Yet, none of these are validated or widely
recognized as a plausible explanation for the origin of hUC coiling
(1). However, using state-of-the-art technologies including arterial
digital reconstruction and transcriptomic analysis to study cord
coiling in our unique monozygotic twin cohort, we can now chal-
lenge and refute previous explanations of the origin of cord coiling.
We were able to visualize the distinct arrangement of the two
muscle layers in the tunica media in the umbilical cord arteries and
identify genes that are pivotal in the formation of umbilical cord
helices.

The most commonly invoked explanation for hUC coiling is that
the number of helices would depend on the amount of fetal
movement including active and passive torsions (2). However, this is
implausible because the helices develop at 7 wk of gestational age,
before the ability of the fetus to actively move (2). Also, this ex-
planation would predict that coiling may change during pregnancy,
and this has never been documented. In addition, excessive growth
is unlikely to underlie hypercoiling, given extensively long umbilical
cords (ELUC) were associated with a variety of placental pathologies

such as true knots but not with hypercoiling in a previously con-
ducted study (16). Similarly, a hemodynamic origin can be refuted,
as in the first trimester before week 7 when helices are being
formed, the blood flow is limited and insufficient to induce helices
(51, 52). Around week 11, the blood flow velocity becomes mea-
surable within the umbilical cord, and this occurs after the helices
are already present in the umbilical cord (51, 52).

Our macroscopic inspection revealed that the coiling phenotype
is provoked by the coiling of the arteries as hUC Wharton’s jelly
including the vein lost its distinctive coiled characteristics after
dissecting out the artery. This observation confirms earlier research
describing that the artery is fundamental to hUC coiling (2). This has
led to various hypotheses on the origin of cord coiling that involve
differences in muscle arrangement in the intima–media of the
arteries. One hypothesis states that a small bundle of extra muscle
fibers at the side of the arteries, the Roach muscle, may be re-
sponsible for cord coiling. However, the presence of the Roach
muscle is not the key determinant for hUC coiling as the Roach
muscle can also be present in both normo- and hypocoiled cords,
and on the contrary, it can be absent in hypercoiled cords (53).
Using umbilical artery digital reconstruction of consecutively cut
serial slides, we found that hUC coiling most likely originates from
the two separate muscle cell layers within the arterial muscle wall,
the tunica media, where muscle fibers are aligned in opposite
directions.

The composition of themuscle layers of umbilical cord arteries is
fundamentally different than arteries found in other parts of the
human body (54, 55). All other arteries, including the aorta, are
histologically composed of one circular muscle layer (tunicamedia)
with fibers aligned in a uniform circular direction. The umbilical
artery is an exception and is the only artery that forms helices and
consists of two muscle layers in the tunica media. Interestingly,
when comparing the hUC to those of other placental mammals
(Placentalia), macroscopic and histological properties support our
hypothesis that helices are formed by the structural composition of
the artery’s muscle cell layers. The UCs of odd-toed ungulates
(Perissodactyla) such as horses and alpacas are macroscopically
coiled and consist histologically of two muscle layers aligned in
opposite directions, similar to human umbilical cords (56, 57, 58, 59).
In contrast, the UCs of even-toed ungulates (Artiodactyla) and
aquatic mammals (Sirenia) such as buffaloes and Amazonian
manatees, respectively, are macroscopically uncoiled and contain
arteries, histologically composed of a single muscle layer (60, 61).
These observations strengthen our conclusion that coiling can
occur if two muscle cell layers are present in the artery that are
aligned in opposite directions to form helices.

To gain a deeper understanding of the molecular basis of hUC
helices, we generated a transcriptomic and DNAmethylation profile
of hUC arteries obtained from MZ twin pairs discordant for cord
coiling. The MZ twin pairs share their genome, parental factors, and
most of the intrauterine environmental conditions during fetal
development. Nevertheless, even with these shared characteristics
the twin pairs were distinctly discordant for the number of helices.
Therefore, genetic, most environmental, and parental influences
are unlikely to be the dominant determinants of cord coiling. We
observed distinct differences in gene expression within these
discordant twin pairs. Specifically, we identified 28 differentially

Table 1. Continued

29

LRRC8A is a leucine-rich repeat–containing protein and
forms an essential component of the volume-regulated
anion channel (45). Down-regulation of LRRC8A decreases
cerebrovascular smooth muscle cell proliferation (47).

30

ENPEP encodes for aminopeptidase, a membrane-
associated protease. It is up-regulated in pericytes of
tumor blood vessels. Aminopeptidase-binding peptides
can inhibit its proteolytic function, which in turn affects
endothelial cell function and angiogenesis (48).

31

CHRDL-1 is a bone morphogenetic protein (BMP)
antagonist and is suggested to play a role in retinal
angiogenesis by modulating BMP-4 actions on endothelial
cells (49). In addition, CHRDL-1 was shown to inhibit
proliferation and migration of amniotic fluid–derived
mesenchymal stromal cells (50).

Description of the function and interaction of differentially expressed genes
between hypercoiled and control umbilical arteries. Assigned numbers in
the first column correspond to Fig 3A. This list is a selection of found
functions and interactions and does not contain a complete list of published
functions and interactions.
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expressed genes and annotation of the function of these genes
implicated a role of vascular development, inflammatory response,
extracellular matrix, cell–cell adhesion, polarity, and axis formation
including left–right (a)symmetry in the origin of cord coiling.

Zooming in on the differentially expressed genes, 12 of the 28
differentially expressed genes were shown to play a role in vascular
development, cell–cell adhesion, polarity, and axis formation.
Among the differentially up-regulated genes in hypercoiled arteries
were two major transcription factors, KLF2 and KLF4, playing a key
role in vascular maturation and blood vessel function. Furthermore,
we observed the down-regulation of DLL4, a gene expressed in
umbilical arteries but not the umbilical vein (34). Deletion of DLL4
has been associated with abnormal and decreased arterial de-
velopment in mice (36). We also detected up-regulation of CDH2
(N-cadherin) in hypercoiled arteries. CDH2 is known to promote
angiogenesis and stabilize blood vessels by acting as a cell–cell
adhesionmolecule to enhance the interaction between endothelial
and mesenchymal cells (24, 25), potentially playing a role in
retaining the hypercoiled state of the UCs. Genes encoding for
leucine-rich repeat–containing proteins LUM, ASPN, and DCN were
found to be up-regulated. Although DCN (42, 43) and ASPN (44, 45)
can bind to type I collagen to support cell adhesion, LUM (40) plays
a key role in regulating the stromal collagenmatrix. Also, LEFTY2 (26)

and CDH2 (22), genes encoding for asymmetrical signaling mole-
cules, were down-regulated in hypercoiled arteries. CDH2 was
found to play a role in establishing the left–right symmetry during
development independent of LEFTY and NODAL (62).

The genes associated with cell–cell adhesion and vascular de-
velopment as mentioned earlier are essential for maintaining the
structural characteristics of the muscle wall. Luis Martinez-Lemus
and Gasser et al extensively described the normal appearance and
collagen structure of the arterial tunica media in the human body
(63, 64). Each smooth muscle cell is surrounded by a basement
membrane, cytoskeleton, and intracellular connections such as
integrins, collagenous fibrils, and cadherins (65). Vascular smooth
muscle cells of arteries in the human body are typically oriented
along the longitudinal axis. The collagen fibers in the tunica media
are arranged in a helical structure (64). Muscle fiber alignment of a
smooth muscle cell can vary with a maximum variation of 20° (63).
This variance may be emphasized by the presence of a double
muscle layer of which both layers are aligned in opposite directions
resulting in a helix. The observed up-regulation of type I
collagen–binding DCN and ASPN, stromal matrix component LUM,
and polarity-associated CDH2 (N-cadherin) and LEFTY2 may facil-
itate structural adaptation in the artery, promoting its helical
configuration.

Table 2. Gene annotation of the 10 most differentially methylated CpGs between hypercoiled and control umbilical arteries.

Location GRCh38/hg38 Annotated gene Gene function P-value

cg23549367 ↓ chr3 190002687-190002689 P3H2 Prolyl 3-hydroxylase plays a critical role in post-
translational modification of fibril-forming collagensi. 1.02 × 10−06

cg03055894 ↓ chr4 78558508-78558510 ANXA3
Annexin A3 is a phospholipid-binding protein and has been
identified to play a role in inflammatory response and
tumorigenesisi.

1.86 × 10−06

cg13710662 ↓ chr7 151199402-151199404 IQCA1L IQ motif–containing AAA domain 1 like was predicted to
enable ATP-binding activityi. 5.64 × 10−06

cg05346527 ↓ chr17 50465160-50465162 ACSF2
Acyl-CoA synthetase family member 2 is located in the
mitochondrial matrix and is involved in fatty acidmetabolic
processes

6.44 × 10−06

CHAD Chondroadherin is a leucine-rich cartilage matrix protein
that plays a role in the adhesion of chondrocytesi.

cg14287565 ↑ chr9 124868409-124868411 ARPC5L
Actin-related protein 2/3 complex subunit 5 like is involved
in actin filament–binding activity, actin nucleation, and cell
migrationi.

9.82 × 10−06

cg17672209 ↓ chr5 134521153-134521155 — CpG is located in an intergenic region. 1.17 × 10−05

cg00525772 ↑ chr15 45715269-45715271 AC068722.1 AC068722.1 was identified as a long non-coding RNA
(ENSG00000259200)ii. 1.49 × 10−05

cg25367332 ↑ chr11 AP001007.1 AP001007.1 was identified as a long non-coding RNA
(ENSG00000254932)ii. 1.74 × 10−05

125265978-125265980 PKNOX2 PBX/knotted 1 homeobox 2 is a transcription factor and
plays a role in cell proliferation and differentiationi.

cg26882909 ↓ chr17 37791817-37791819 — CpG is located in an intergenic region. 1.81 × 10−05

cg20712631 ↓ chr5 172647061-172647063 NEURL1B
Neuralized E3 ubiquitin protein ligase 1B is located in actin
cytoskeleton and cytosol and involved in ubiquitin-
dependent endocytosisi.

2.02 × 10−05

Gene annotation of the 10 most differentially methylated CpGs between hypercoiled and control umbilical arteries. Genomic location, annotated gene, gene
function, and P-value are displayed. All annotated CpGs are located in the gene body. Gene region is retrieved from the UCSC Genome Browser on Human
(GRCh38/hg38). Gene function is retrieved from www.genecards.orgi or www.ensemble.orgii. nc indicates that the CpG is located in a non-coding region. ↑
indicates an increase in methylation in hypercoiled umbilical arteries, and ↓ indicates a decrease in the methylation level in hypercoiled umbilical arteries.
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Interestingly, blocking the function of CDH2 with an antibody led
to randomized heart looping in the chicken embryo (22), a process
relying on muscle fiber alignment in crossing direction, similar to
the process we identified to underlie the formation of hUC helices.
CDH2 and the association with abnormal heart development are
linked to the helical appearance and spatial distribution of over-
lapping superficial and deep myocardial fibers of the ventricular
heart with concentric contraction of the myocardium (66, 67). The
up-regulation of CDH2 in hypercoiled hUCs may give an increased
muscle fiber alignment, contributing to and maintaining the in-
creased coiling.

Lastly, our analysis revealed six genes involved in the inflam-
matory response that were found to be differentially regulated, a
process known to be closely intertwined with thrombotic disorders.
KLF2 and KLF4were shown to uphold an antithrombotic effect in the
vessel wall (17), whereas ZFP36 reduces an inflammatory response
by guiding mRNA for degradation (28, 29). Yet, we also observed the
down-regulation of the pro-inflammatory CXCL2. We hypothesize
that observed down-regulation of the anti-inflammatory genesmay
be the result of the increased thrombotic risk in hypercoiled ar-
teries. Fetal hUC vascular obstruction has been shown to be an
effector of the adverse pregnancy outcomes such as stillbirth in
case of hypercoiling (15).

Epigenetic marks, together with transcription factors, largely
control the regulation of gene expression. DNAmethylation is themost
extensively studied epigeneticmark in population cohorts contributing
to the regulation of gene expression. We compared the DNA meth-
ylation profile of hypercoiled and normocoiled hUC arteries. Never-
theless, no difference in DNAmethylation was observed. The expected
differences in the methylation level are rather small as compared to
gene expression differences, and the correction for multiple testing is
stringent because of the large number of tested loci. Therefore,
extending this comparison to a larger cohort may increase sensitivity
to detect potential differential gene regulation in hUC arteries. Another
important factor is that gene expression regulation relies on a highly
complex interplay of various epigenetic mechanisms and transcription
factors. Therefore, it may also be the case that differences have
manifested at another level of the epigenome such as in the binding of
histones or other regulatory proteins, thereby affecting DNA acces-
sibility to the transcriptional machinery.

The observed differences in gene expression between hyper-
coiled and normocoiled hUC arteries likely originated and man-
ifested during early development. This is supported by the fact that
the number of helices in a cord is established by week 7 and
retained throughout pregnancy (1). We hypothesize that develop-
mental plasticity allows an intrinsic or stochastically occurring
trigger to modify gene expression, enabling a change in helix
formation and stabilization of the hUC arterial hypercoiling. Yet, the
underlying mechanism and causality of gene expression on de-
velopmental origins of hypercoiling remain to be uncovered.

In conclusion, our investigation into the origin of hUC coiling
shows that the helical structure of the hUC is primarily derived from
the hUC arteries rather than the vein and Wharton’s jelly. We
demonstrated that the tunica media of the hUC arteries consist of
two muscle cell layers with muscle fibers oriented in opposite
directions. This unique arrangement is specific to the umbilical
artery and is likely to enable coiling of the arteries. Showing that MZ

twin pairs can be highly discordant for hUC coiling, it is unlikely that
the dominant factor for coiling is of genetic or parental origin.
Comparing the cord arterial transcriptomic profile of these MZ twin
pairs, we found 28 differentially expressed genes. This includes the
up-regulation of genes associated with muscle fiber alignment,
cell–cell interaction, regulation of the stromal collagen matrix,
polarity, and axis formation that may enhance increased muscle
fiber alignment in hUC arteries resulting in an increased number of
helices. This gives a new twist on the existing explanations of the
origin of hUC helices and provides a basis to further elucidate the
biological origin of hUC coiling.

Materials and Methods

Ethical statement

hUCs from monozygotic (MZ) more specifically monochorionic twin
pairs were collected at the Department of Obstetrics at the Leiden
University Medical Center in the Netherlands with the ethical ap-
proval of the institutional medical ethical committee (P18.184).
Written informed consent for the collection was obtained from all
parents in the framework of the TwinLIFE study (International
Clinical Trials Registry Platform ID NL7538) (68).

Umbilical cord artery collection

After birth, the hUCs were cut from the chorionic plate of the chorio-
allantoic placenta (placenta) ~5–10 cm from the hUC insertion and
transferred to a PBS solution supplementedwith 0.38 μg/ml polymyxin
B sulfate (Sigma-Aldrich), 20 μg/ml kanamycin (Gibco), 10 μg/ml
penicillin/streptomycin (Lonza), and 1 μg/ml amphotericin B
(Sigma-Aldrich). The hUCs were kept at 4°C for amaximumof 24 h until
processing. The umbilical cord helices were retained after separation
from the placenta, and the UCI was determined for all twin pairs
included in the TwinLIFE study that were born between April 2021 and
September 2021. TheUCIwas calculated by dividing the number of coils
by the entire length of the retrieved hUC as described by reference 8.
hUC arteries were collected when one of the hUCs displayed a UCI
above 0.3 (hypercoiled/case) and the other hUC displayed a UCI below
0.3 (normocoiled/control). Discordant MZ twin pairs were therefore
used as their own control group. To extract the hUC arteries, the
collected hUC was cut into pieces of ~3 cm. All pieces were placed into
a container with sterile PBS to wash off the remaining blood.
Thereafter, one hUC piece was randomly retrieved from the container
and cut longitudinally to reveal the hUC arteries within Wharton’s jelly.
Subsequently, thehUCarterieswere extracted, again thoroughly rinsed
with PBS to remove all the remaining blood, and partly used for
histological assessment and partly snap-frozen in liquid nitrogen for
DNA and RNA isolation.

Hematoxylin/eosin (H&E) and elastin staining

For histological assessment, part of the hUCs and separately
extracted hUC arteries were fixated in 4% formalin and embedded
in paraffin blocks. Formalin-fixed, paraffin-embedded hUC tissues
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were hematoxylin-and-eosin (H&E)– and Van Gieson’s elastin–
stained according to the standardized routine laboratory protocol.
The hUCs and arteries were histologically evaluated as previously
described by reference 69. These formalin-fixed, paraffin-
embedded hUC arteries were subsequently used to cut 100 con-
secutive serial slides (thickness 4 µm), for digital reconstruction as
described in the next section.

Umbilical cord arterial digital reconstruction

Imaging of the consecutive sections was performed with the
Pannoramic 250 Flash II slide scanner (3DHISTECH, Hungary) at a
magnification of 40x. After acquisition, the images of the sections
were aligned using custom MATLAB (version R2021b, MathWorks
Inc.) scripts (available upon request), Libvips (70), and TrakEM2 (71),
followed by histogram equalization (MATLAB).

Isolation and culture of umbilical cordmesenchymal stromal cells

hUC-MSCs were isolated from the hUC using our robust and
standardized method (72). In short, hUC pieces were placed on a
petri dish with the inside of the cord facing down. Subsequently,
culturemedium consisting of minimum essential medium α (αMEM)
GlutaMAX (Gibco) supplemented with 100 μg/ml penicillin/
streptomycin (Gibco) and 5% PLTGOLD human platelet lysate
(Merck) was added, and the dishes were incubated in a humidified
atmosphere at 37°C with 5% CO2. After hUC-MSC outgrowth, hUC-
MSCs were dissociated from the petri dishes and expanded to
passage 1. The culturemediumwas changed twice a week. Passage 1
in liquid nitrogen snap-frozen hUC-MSC pellets was used for RNA
isolation.

RNA/DNA isolation and quantification

DNA and RNA were extracted from the same randomly selected
snap-frozen artery fragment using Quick-DNA/RNA Miniprep
Plus Kit (Zymo Research), and RNA was isolated from the hUC-MSC
pellets using Quick-DNA/RNA Microprep Plus Kit (Zymo Research)
according to the manufacturer’s protocol. DNA and RNA concen-
trations were assessed using Qubit dsDNA High Sensitivity Assay Kit
and Qubit RNA Broad Range Assay Kit (Invitrogen), respectively
(Invitrogen). The RNA integrity number (RIN) was determined for a
subset of the samples using Agilent 2100 Bioanalyzer Instrument
(Agilent RNA 6000 Nano Reagents) to ensure proficient RNA quality
for RNA sequencing. To ensure proficient DNA quality and minimal
degradation, a subset of the samples was placed on an agarose gel
and assessed.

RNA sequencing

Total RNA (50 μl of 25 ng/μl RNA in RNase/DNase-free water) was
submitted to Macrogen Europe. After passing in-house quality
control, RNA-sequencing libraries were prepared using the Illumina
TruSeq Stranded mRNA library prep. Subsequently, barcoded li-
braries were sequenced with a depth of 40 million paired reads per
sample and a read length of 150 bp on the NovaSeq 6000 (Illumina).

RNA-sequencing analysis

RNA-sequencing files were processed using the opensource
BIOWDL RNA-seq pipeline v5.1.0 (73) developed at the LUMC. This
pipeline performs FASTQ preprocessing including quality control,
quality trimming, and adapter clipping, RNA-seq read alignment,
and read quantification. FastQC (v0.11.9) was used for checking raw
read QC. Adapter clipping was performed using Cutadapt (v2.10)
with default settings. RNA-Seq reads’ alignment was performed
using STAR (v2.7.5a) on the GRCh38 human reference genome. The
gene read quantification was performed using HTSeq-count
(v0.12.4) with the setting “–stranded = reverse.” The gene annota-
tion used for quantification was Ensembl version 105.

For the differential gene expression analysis, R v4.1.0 was used.
The read count data of eight samples were labeled into two main
groups (control: UCI < 0.3; hypercoiled: UCI >0.3), and each of the
four MZ twin pairs was paired on familyID. During the preprocessing
of raw count data, low-expressed genes were removed, by including
only the transcripts with a log2CPM cutoff of 1 in at least 25% of the
samples. The remaining counts (12,230 genes) were used as input to
test for differential gene expression between hypercoiled/case and
normocoiled/control samples using DESeq2 (v1.34.0). Hypercoiled
and normocoiled samples were compared with familyID as a co-
variate to pair the comparison by family, an analysis equivalent to a
paired t test. The Benjamini–Hochberg procedure was used to
correct for multiple testing, and a false discovery rate (FDR) < 0.05
was considered statistically significant.

Pathway enrichment analysis

The pathway enrichment analysis was based on four existing da-
tabases: GO Biological Process (2021) (74), BioPlanet (2019) (75),
WikiPathways Human (2021) (76), and Hallmark Molecular Signature
(2022) (77). The 28 differentially expressed genes (PFDR < 0.05) were
used as input, and the 12,230 genes expressed in our dataset were
used as background. All 28 differentially expressed genes and
10,785 of 12,230 background genes were annotated with at least one
pathway in the four queried databases. Pathway enrichment P-
values were adjusted for multiple testing using the Benjamini–
Hochberg method, and only pathways with a PFDR < 0.05 were
considered significantly enriched.

DNA methylation

Total DNA (500 ng in 45 μl RNase/DNase-free water) was submitted
to the Human Genotyping Facility of the Genetic Laboratory of the
Department of Internal Medicine at the Erasmus Medical Center for
DNA methylation measurement using the Illumina Infinium
Methylation EPIC BeadChip array. Samples were run on the same
array in an order randomized for coiling while keeping the twin
pairs adjacent.

DNA methylation analysis

The DNAmArray pipeline was used for preprocessing and quality
control of the methylation data (78). Sample quality was assessed
using visualizations, including MethylAid (79) plots, to detect
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outlying or unreliable values. The data further underwent func-
tional normalization, probe QC, and imputed missing values.

After quality control, the dataset contained DNA methylation at
852,836 CpGs and was annotated to the GRCh38/hg38 reference
genome using InfiniumMethylation BeadChips Annotation Manifest
of reference 80 (GENCODEv36, EPIC, https://zwdzwd.github.io/
InfiniumAnnotation). Subsequently, CpGs located in the ENCODE
blacklist regions (81) (8,838 CpGs), polymorphic probes according to
reference 80 (95,453 CpGs) (Mask information, EPIC, https://
zwdzwd.github.io/InfiniumAnnotation), and CpGs located on the
X (18,703 CpGs), Y (99 CpGs), and M (7 CpGs) chromosomes were
omitted leaving a dataset of 729,706 CpGs (80). To assess differential
DNA methylation, a linear model was applied as follows: “CpGs ~
CoilingStatus + FamilyID” (CpG, beta-value at each CpG; Coiling-
Status, binary variable Hypercoiled/Control; FamilyID, FamilyID of
each MZ twin pair). CpGs were considered differentially methylated
when the for-adjusted (FDR) P-values were <0.05. Statistical
analysis, graphs, and figures were created using R Software version
4.1.3 and BioRender (https://biorender.com/).

Data Availability

The raw data used for analysis in this study are available upon
reasonable request from the corresponding author (LE van der
Meeren). The data are not publicly available because of privacy
restrictions.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202302543.
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