113 research outputs found

    Properties of quantizer and dequantizer operators for qudit states and parametric down-conversion

    Get PDF
    We review the method of quantizers and dequantizers to construct an invertible map of the density operators onto functions including probability distributions and discuss in detail examples of qubit and qutrit states. The biphoton states existing in the process of parametric down-conversion are studied in the probability representation of quantum mechanics

    ÎČ<sup>3</sup>-tripeptides act as sticky ends to self-assemble into a bioscaffold

    No full text
    Peptides comprised entirely of ÎČ3-amino acids, commonly referred to as ÎČ-foldamers, have been shown to self-assemble into a range of materials. Previously, ÎČ-foldamers have been functionalised via various side chain chemistries to introduce function to these materials without perturbation of the self-assembly motif. Here, we show that insertion of both rigid and flexible molecules into the backbone structure of the ÎČ-foldamer did not disturb the self-assembly, provided that the molecule is positioned between two ÎČ3-tripeptides. These hybrid ÎČ3-peptide flanked molecules self-assembled into a range of structures. α-Arginlyglycylaspartic acid (RGD), a commonly used cell attachment motif derived from fibronectin in the extracellular matrix, was incorporated into the peptide sequence in order to form a biomimetic scaffold that would support neuronal cell growth. The RGD-containing sequence formed the desired mesh-like scaffold but did not encourage neuronal growth, possibly due to over-stimulation with RGD. Mixing the RGD peptide with a ÎČ-foldamer without the RGD sequence produced a well-defined scaffold that successfully encouraged the growth of neurons and enabled neuronal electrical functionality. These results indicate that ÎČ3-tripeptides can form distinct self-assembly units separated by a linker and can form fibrous assemblies. The linkers within the peptide sequence can be composed of a bioactive α-peptide and tuned to provide a biocompatible scaffold

    Multiplicity dependence of K*(892)0 and ϕ(1020) production in pp collisions at s

    Get PDF
    The striking similarities that have been observed between high-multiplicity proton-proton (pp) collisions and heavy-ion collisions can be explored through multiplicity-differential measurements of identified hadrons in pp collisions. With these measurements, it is possible to study mechanisms such as collective flow that determine the shapes of hadron transverse momentum (pT) spectra, to search for possible modifications of the yields of short-lived hadronic resonances due to scattering effects in an extended hadron-gas phase, and to investigate different explanations provided by phenomenological models for enhancement of strangeness production with increasing multiplicity. In this paper, these topics are addressed through measurements of the K⁎(892)0 and ϕ(1020) mesons at midrapidity in pp collisions at s= 13 TeV as a function of the charged-particle multiplicity. The results include the pT spectra, pT-integrated yields, mean transverse momenta, and the ratios of the yields of these resonances to those of longer-lived hadrons. Comparisons with results from other collision systems and energies, as well as predictions from phenomenological models, are also discussed

    Measurement of K*(892)(+/-) production in inelastic pp collisions at the LHC

    Get PDF
    The first results on K⁎(892)± resonance production in inelastic pp collisions at LHC energies of s=5.02, 8, and 13 TeV are presented. The K⁎(892)± has been reconstructed via its hadronic decay channel K⁎(892)→±KS0+π± with the ALICE detector. Measurements of transverse momentum distributions, pT-integrated yields, and mean transverse momenta for charged K⁎(892) are found to be consistent with previous ALICE measurements for neutral K⁎(892) within uncertainties. For pT>1 GeV/c the K⁎(892)± transverse momentum spectra become harder with increasing centre-of-mass energy from 5.02 to 13 TeV, similar to what previously observed for charged kaons and pions. For pT<1 GeV/c the K⁎(892)± yield does not evolve significantly and the abundance of K⁎(892)± relative to K is rather independent of the collision energy. The transverse momentum spectra, measured for K⁎(892)± at midrapidity in the interval 0 < pT<15 GeV/c, are not well described by predictions of different versions of PYTHIA 6, PYTHIA 8 and EPOS-LHC event generators. These generators reproduce the measured pT-integrated K⁎±/K ratios and describe well the momentum dependence for pT<2 GeV/c

    Transverse-momentum and event-shape dependence of D-meson flow harmonics in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The elliptic and triangular flow coefficients v2 and v3 of prompt D0, D+, and D∗+ mesons were measured at midrapidity (|y| < 0.8) in Pb–Pb collisions at the centre-of-mass energy per nucleon pair of √sNN = 5.02 TeV with the ALICE detector at the LHC. The D mesons were reconstructed via their hadronic decays in the transverse momentum interval 1 < pT < 36 GeV/c in central (0–10%) and semi-central (30–50%) collisions. Compared to pions, protons, and J/ψ mesons, the average D-meson vn harmonics are compatible within uncertainties with a mass hierarchy for pT 3 GeV/c, and are similar to those of charged pions for higher pT. The coupling of the charm quark to the light quarks in the underlying medium is further investigated with the application of the event-shape engineering (ESE) technique to the D-meson v2 and pT-differential yields. The D-meson v2 is correlated with average bulk elliptic flow in both central and semi-central collisions. Within the current precision, the ratios of per-event Dmeson yields in the ESE-selected and unbiased samples are found to be compatible with unity. All the measurements are found to be reasonably well described by theoretical calculations including the effects of charm-quark transport and the recombination of charm quarks with light quarks in a hydrodynamically expanding medium
    • 

    corecore