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Abstract: We review the method of quantizers and dequantizers to construct an invertible map of the
density operators onto functions including probability distributions and discuss in detail examples
of qubit and qutrit states. The biphoton states existing in the process of parametric down-conversion
are studied in the probability representation of quantum mechanics.
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1. Introduction

Quantum states are usually determined using the wave functions [1,2] or the density
matrices [3,4]. However, there exists the other way to describe quantum states. For systems
with continuous variables such as oscillators, quantum states are associated, e.g., with
Wigner functions [5] or Husimi–Kano functions [6,7]. In connection with the develop-
ment of theories for laser photon states, quasidistributions describing these states were
introduced by Glauber [8] and Sudarshan [9]. For systems with discrete variables such as
spin systems and N-level atom systems, qubits, and qudits, the Wigner functions were
introduced and studied; see, e.g., [10,11]. All the various methods of describing the system
quantum states are related to different experimental possibilities to study physical proper-
ties of the systems, which are available in some states characterized by a density operator
acting on the Hilbert space.

Recently, the probability representation of quantum states for continuous variables [12]
and discrete spin variables [13–18] was suggested; see review [19] and recent papers [20–33].
All mentioned descriptions of quantum states can be constructed, using different methods
of mapping the density operators and state vectors onto different kinds of functions, includ-
ing the functions which are the probability distributions associated with measurements of
various physical characteristics of quantum systems; the functions are called symbols of
the density operators. If these functions are functions of finite number of discrete variables,
we call these variables the symbol components.

The aim of this paper is to present a review of the approach to employ different
representations of quantum states. The representations can be constructed using some sets
of variables, discrete or continuous. Sometimes these variables can have a concrete physical
meaning [34]. To describe quantum states, one can also select observables which can be
measured. There are various ways to introduce such numerical characteristics determining
quantum states. A method of finding the sets of variables specifying the quantum state
is the use of operators called quantizers and dequantizers. Using these operators, one
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can find a set of variables which determines the quantum state. To do this, one should
calculate the trace of the product of dequantizers with the quantum-state density operator.
The resulting sets of variables, discrete or continuous ones, form a function called the state
symbol. Operators which form sets of quantizers and dequantizers have a certain algebraic
structure. Different sets of quantizers and dequantizers give different symbols of the state
density operators. These symbols may have different physical meanings.

On the other hand, some algebraic structures can be associated with each set of
quantizer–dequantizer operators, in particular, they can have the properties of either the
associative algebras or Lie algebras. It turns out that the requirement that the symbols of
the state density operators have the physical meaning imposes additional conditions on
these algebras. In this paper, we consider systems of qudits of an arbitrary dimension d as
physical objects. Such an object can exist as a multilevel system. The density matrix of such
a system state is the d× d matrix; it includes d2 − 1 independent parameters, and different
physical meanings can be given to these parameters. In [22–24], the interpretation of qutrits
was proposed as a set of qubits interacting with each other.

In [31], this approach was generalized to qudits of an arbitrary dimension. Represent-
ing a qudit as a set of qubits, one can interpret their parameters either as probabilities of
the values of spin projections on certain axes or as the mean values of these projections.
The example to construct the probability representation of qudit states on the base of SU(2)
symmetry was given in [25] including examples of qutrit and ququart. In [27], we consid-
ered qubits and qudits; their representation was found in terms of the probabilities and
mean values. We demonstrated that these sets of probabilities and mean values form the
representation spaces of symmetry groups corresponding to the density matrices; for the
qubit case, these representations were found explicitly.

In [21,22], we constructed associative algebras and Lie algebras that are generated
by such quantizer–dequantizer operators and showed that in some cases the structure
constants of these algebras have additional symmetry properties. We established that all
quantizers and dequantizers whose symbols are measurable observables, such as spin-
projection probabilities and mean values, are Hermitian operators and presented the
algebraic structure of such sets. We constructed the associative algebras and Lie algebras
generated by the quantizer–dequantizer operators and calculated the structure constants
of these algebras [21,22]. In the case where the symbol of the density operator corresponds
to the mean values of spin projections, we showed that the corresponding dequantizers
and quantizers form a self-dual system, i.e., their operators coincide up to a numerical
multiplier. The structure constants of the Lie algebras generated have an additional
property of symmetry. Also in [21,22], we introduced a concept of the inner product of the
symbol components, which is dual to star product of symbols, and demonstrated that it
can be used to construct the associative algebras and Lie algebras, with elements being the
components of symbols of the density operators.

In this paper, we consider in detail qudits of an arbitrary dimension d; for them,
the sets of quantizers and dequantizers are found, for which the components of the corre-
sponding symbols have the meaning either of probabilities or mean values. In view of the
application of the approach, we consider, as an example, the process of parametric down-
conversion [35,36] and discuss in the probability representation the qutrit and ququart
states realized in this process.

This paper is organized as follows.
In Section 2, we consider general properties of quantizer and dequantizer operators

and describe invertible maps of the operators acting in a Hilbert space onto functions called
symbols of the operators. Particular examples of the quantizer–dequantizer operators for
the system of qudits are presented in Section 3. In Section 4, we discuss in detail the example
of qutrit states and study the system of four-level atoms and its states in the probability
representation of quantum mechanics. We discuss the possibility to apply the quantizer–
dequantizer approach for studying such a nonlinear phenomenon as the parametric down-
conversion in Section 5. Finally, we present our conclusions and prospectives in Section 6.
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2. The Method of Quantizers and Dequantizers

The method of quantizer–dequantizer operators was suggested in [37]; see also [38–41],
to describe the construction of quantum symplectic tomographic-probability distribu-
tions [12] identified with quantum states as well as other possible quasidistribution func-
tions such as the Wigner function [5] describing the photon (and other) states. This method
is based on the idea to introduce Wigner functions for spin states using the notion of
quantizer operator [42]. The method looks as follows.

Let us consider the set of operators Û(x) acting on a Hilbert spaceH. The operators
of this set depend on parameters x = (x1, x2, . . . , xN), which can be either continuous or
discrete ones. For any operator Â acting on the Hilbert spaceH, we introduce its symbol
fA(x), which is the function defined, in view of the dequantizer operators, as

fA(x) = Tr
(

ÂÛ(x)
)
. (1)

We assume that there exists the other set of operators D̂(x) acting in the Hilbert spaceH
and called the quantizer operators; these operators provide the possibility to reconstruct
the operator Â if the symbol of this operator is known, using the relation

Â =
∫

fA(x)D̂(x) dx. (2)

This formula is written for the case of continuous parameters x = (x1, x2, . . . , xN). If the
parameters are discrete ones, the integral in (2) is replaced by the corresponding sum.

The condition for the existence of a pair of the quantizer–dequantizer operators is
given by the equality

Tr
(

ÂÛ(x)
)
=
∫

Tr
(

ÂÛ(x′)
)

Tr
(
Û(x)D̂(x′)

)
dx′; (3)

a particular case of this relation takes place if the following equality is valid:

Tr
(
Û(x)D̂(x′)

)
= δ

(
x− x′

)
. (4)

In the case of discrete variables x, the integrals in the above equation are replaced by the
sum over the discrete indices.

For the dequantizer operators satisfying the equality Û†(x) = Û(x) and the condition
Tr Û(x) = 1 along with the constraint Û(x) ≥ 0, the dequantizer operators have all the
properties of density operators; this means that, if operators Â are taken to be density
operators ρ̂ of a system state, the function

P(x) = Tr
(
ρ̂Û(x)

)
≥ 0 (5)

is, according to Born’s rule, the probability distribution, which can be normalized, if one
takes into account the physical meaning of the parameters x = (x1, x2, . . . , xN). One
can derive the expression of the density operator ρ̂ in terms of the probabilities and the
quantizer operator D̂(x); it reads

ρ̂ =
∫

P(x)D̂(x) dx. (6)

In our present study, we concentrate on the case of discrete variables for three- and
four-level atoms (qutrits and ququarts). We start with the consideration of the general
properties of qudit states and construct particular cases of the density-matrix probability
representation of the qudit states. There exists an infinite number of the probability
representations, in view of the infinite number of different kinds of dequantizers Û(x).
In fact, the properties of Û(x) and D̂(x) mean that the d× d-matrices |U(x)〉 form the
basis in the d2-dimensional linear space. The vectors have the components following the
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rule of an invertible map [43] of matrices onto the vectors shown on the example of d = 2;

namely we map a given 2×2-matrix M =

(
m11 m12
m21 m22

)
onto the vector

|M〉 =


m11
m12
m21
m22

. (7)

In the space of four vectors for a given basis, there is an infinite number of basis vectors
obtained as a linear combination of given basis vectors satisfying the completeness relation.

If the basis vector components are the probabilities, any convex sum of these vectors
also determines the probabilities. If the convex sum of the initial basis vectors determines
a complete set of the other basis vectors with the probability components, this means
that there exist different possibilities to construct the probability representation of the
state density matrices. Different kinds of such probability representations of qudit density
matrices were considered in [15,25,44].

In the next Sections 3 and 4, we explicitly construct specific quantizer and dequantizer
operators for the qudit states.

3. Qudits and Their Quantizers and Dequantizers

Here, we briefly review the properties and applications of quantizers and dequantizers
for systems of qudits. Assume that we have a quantum state described by the density
operator ρ̂, for which the matrix elements of a d-dimensional density matrix are

ρjk = Tr(ρ̂ |k〉 〈j|), j, k,= 1, . . . , d. (8)

Here, the vectors |k〉 are basis vectors in the d-dimensional Hilbert spaceH satisfying the
orthogonality and normalization conditions 〈k|j〉 = δkj.

The matrix ρjk is described by (d2 − 1) real parameters and can be mapped onto
d2 dequantizers Û(n); n = 1, . . . , d2. A set of the dequantizers can be selected in different
ways—the choice is determined by the values we prefer to use as the symbol components.
Let us choose the real and imaginary parts of matrix elements ρjk,

ρjk = ρ
jk
r + iρjk

c , j < k; j, k = 1, . . . , d. (9)

In this case, one can check that the corresponding set of dequantizers is expressed in terms
of operators Êjk = |k〉 〈j| as follows:

Û(jj)
S = Êjj, j = 1, . . . , d, Êjk = |k〉 〈j| ,

Û(jk)
S =

1
2
(Êjk + Êkj), Û(jk)

cS =
i
2
(−Êjk + Êkj), j < k; j, k = 1, . . . , d.

(10)

The symbol components of the density matrix (8) corresponding to dequantizers (10) read

Tr
(
Û(jj)

S ρ̂
)
= ρjj, j = 1, . . . , d

Tr
(
Û(jk)

S ρ̂
)
= ρ

jk
r , Tr

(
Û(jk)

cS ρ̂
)
= ρ

jk
c , j < k; j, k = 1, . . . , d.

(11)

In view of direct verification, it is easy to prove that dequantizers (10) form an orthogonal
system, and the following relations are valid:

Tr
(
Û(jk)

S Û(mn)
S

)
=

1
2

δjmδkn, Tr
(
Û(jk)

S Û(mn)
cS

)
= 0, Tr

(
Û(jk)

cS Û(mn)
cS

)
=

1
2

δjmδkn. (12)
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From (12) immediately follows that quantizers corresponding to dequantizers (10) have
the form

D̂(jj)
S = Êjj, j = 1, . . . , d,

D̂(jk)
S = (Êjk + Êkj), D̂(jk)

cS = i(−Êjk + Êkj), j < k; j, k = 1, . . . , d;
(13)

this expression for the quantizer system can be obtained in the other way. For this, we use
the representation of the density matrix through its symbol components and quantizers

ρ̂ =
N

∑
j=1

K jD̂(j). (14)

The coefficients K j are included in the structure of the density matrix and, choosing the ma-
trix multipliers attributed to them, we immediately determine the type of the corresponding
quantizer. Thus, in our approach, the sequence of necessary actions is as follows.

Symbol components (11) of the density operator (8) constructed, using dequantiz-
ers (10), completely define this operator. In turn, it can be restored using the numerical
values. To do this, one can use the set of quantizer operators D̂(mn) corresponding to
the set of dequantizer operators (10). Then, in view of quantizers D̂(mn) and symbol
components (11), the density operator (8) can be represented as

ρ̂ =
d

∑
j=1

ρjjÊjj +
d

∑
j<k=1

ρ
jk
r (Êjk + Êkj) +

d

∑
j<k=1

iρjk
c (Êjk − Êkj). (15)

We considered the simplest example of quantizers and dequantizers associated with
the density operator (8). They are defined by (10) and (13), and corresponding symbol
components of the density operator (8) and have the meaning of real and imaginary parts
of matrix elements of (8). These values can be interpreted in different ways—physical,
geometric, and so on. However, one can also be interested in other quantities that are
connected with elements ρjk by linear relations. These values rαβ also completely define
the quantum state, and their total number is d2. Our goal is to find a set of quantizers
and dequantizers corresponding to these values, i.e., to represent them also as symbol
components of the density operator.

We consider two possible cases.
(1) If we know how the original parameters ρjk are expressed in terms of new parame-

ters rαβ,

ρjk =
d

∑
α,β=1

K jk
αβrαβ, j, k, α, β = 1, . . . , d, (16)

we substitute this expression in the density operator (8) and immediately arrive at the
expression for d2 quantizers D̂(αβ). This means that the density operator (8) can be written
in terms of parameters rαβ as follows:

ρ̂ =
d

∑
α,β=1

rαβD̂(αβ). (17)

In fact, the representation of the density operator (8) as (17) is the definition of quantizers
D̂(αβ); to find them, one does not need to perform any calculations but just substitute (16)
into (8). In order to find an explicit form of dequantizers, we need to consider relations (16)
as a system of linear equations for unknown quantities rαβ. Solving this system, we obtain
the expression for the new parameters rαβ through the matrix elements ρjk,
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rαβ =
d

∑
jk=1

Lαβ
jk ρjk, j, k, α, β = 1, . . . , d; (18)

this relationship allows one to find a dequantizer, for which the value rαβ is a symbol
component of the density operator (8). This dequantizer is a linear combination of
dequantizer operators (13) that follows from a linear combination (18) for matrices of
dequantizer operators,

Ûαβ =
d

∑
jk=1

Lαβ
jk Û(jk)

S , j, k, α, β = 1, . . . , d. (19)

(2) The second possibility consists of the fact that we know how the new parameters
rαβ are expressed in terms of matrix elements ρjk. In other words, we assume that (18) is
valid from the very beginning. Then, in view of this relation, we can immediately write
expression (19) for dequantizers Ûαβ. Thus, in this case, expression (19) for dequantizer
operators arises automatically from (18), which expresses the new parameters through the
original ones.

To find an explicit form of quantizers corresponding to dequantizer operators (19), we
need to consider (18) as a system of linear equations for unknown quantities ρjk, i.e., to
perform the inverse operation with respect to the one we did in the previous case (1).
Solving the system of equations (18) we arrive at a formula similar to (16), which expresses
the matrix elements ρjk through the new parameters rαβ. Now, exactly as in the previous
case (1), one must substitute these expressions in matrix (8) and select the numerical
parameters rαβ. The density matrix (8) will take the form (17), where D̂(αβ) are quantizers
corresponding to dequantizer matrices (19).

Thus, we obtained that any sets of quantizers and dequantizers can be expressed in
terms of the original sets of operators (10). In this case, depending on how the new param-
eters are related to the matrix elements of the density matrix, there exist two possibilities:

(i) If the matrix elements ρjk are expressed in terms of the new parameters rαβ using
relations (16), the quantizers can be obtained directly using this relation and, to find
the dequantizer matrices, one needs to solve the system of equations (16).

(ii) If relation (18) is initially available, we first use it to construct dequantizer matrices
and then, solving this system of equations, we obtain the opportunity to construct the
corresponding set of quantizers.

In both cases, one must solve the system of equations that connects the matrix elements
of the density matrix with a new set of parameters. In this respect, our approach is
equivalent to the standard method for constructing a set of quantizers by dequantizers,
which is based on employing the orthogonality relation. In both cases, there is a system of
d2 linear equations for d2 unknowns. However, there is an important difference between
the two approaches. The standard approach uses only an explicit form of dequantizer
operators, and relations (16) and (18) are not taken into account. But these systems can be
much simpler than the systems based on the use of the orthogonality relation, as is often
the case in practice. Therefore, the method of constructing quantizer–dequantizer systems
proposed here is much more reasonable.

4. Example of the Qudit State

In our previous paper [21], we considered the qutrit-state density operator ρ̂3. This
qutrit-state density operator was studied in detail in [45,46]. In [27], we constructed several
sets of quantizer and dequantizer operators for the density operator ρ̂3, applied them to
study the density operator ρ̂3, and analyze the properties of quantizers and dequantizers.
Below we consider the general case of an arbitrary qudit-state density operator. The aim
of this consideration is to map the density operator of an arbitrary qudit state onto the
probability distributions identified with the state. We use the qutrit and ququart states
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as examples of the probability representation of quantum states. A formalism to develop
such a probability representation is the formalism of quantizer and dequantizer operators,
which we present for qutrit and ququart systems to be studied below on the example of
the physical phenomenon called the parametric down-conversion.

In Sections 4–6, we consider the matrix representation of the density operator and
quantizer–dequantizer operators, i.e., instead of the operator notation ρ̂, D̂, and Û , we use
the notation ρ, D, and U for their matrices—the operator Êjk is given by the matrix Ejk,
and this matrix includes one nonzero element, which is equal to unity and located at the
intersection of the jth row and the kth column.

In a generic case, the density matrix of a qudit state reads

ρ = ‖ρjk‖, j, k = 1, . . . , d. (20)

We consider the case where the matrix elements ρjk are

ρ11 =
d

∑
j=2

(d− 1)p(jj)
3 − d + 2, ρjj = 1− (d− 1)p(jj)

3 , j = 2, . . . , d,

ρjk =
1
2

(
dp(jk)

1 − 1
)
− i

2

(
dp(jk)

2 − 1
)

, j < k; j, k = 1, . . . , d.

(21)

In the previous section, we developed a generic scheme for constructing sets of
quantizer–dequantizer operators and analyzed their relations. Now we show how this
scheme is implemented to the qudit state; for this, we consider two sets of dequantizers.

The components of symbol of the density matrix (20) corresponding to dequantiz-
ers (10) read

Tr
(
Û(11)

S ρ̂
)
= m11 =

d

∑
j=2

(d− 1)p(jj)
3 − d + 2,

Tr
(
Û(jj)

S ρ̂
)
= mjj = 1− (d− 1)p(jj)

3 , j = 2, . . . , d,

Tr
(
Û(jk)

S ρ̂
)
= mjk = dp(jk)

1 − 1/2,

Tr
(
Û(jk)

cS ρ̂
)
= mjk

c = dp(jk)
2 − 1/2, j < k; j, k = 1, . . . , d.

(22)

Then the set of quantizers corresponding to the dequantizers matches exactly to the
normalizing coefficients with the set of dequantizers (10) given in matrix form

D(jj)
S = Ejj, j = 1, . . . , d,

D(jk)
S = (Ejk + Ekj), D(jk)

cS = i(−Ejk + Ekj), j < k; j, k = 1, . . . , d.
(23)

We see that dequantizers (10) along with quantizers (23) form the self-dual set.
The density operator of the qudit state can be presented in the form

ρ̂ = D̂(11)
S

(
d

∑
j=2

(d− 1)p(jj)
3 − d + 2

)
+

d

∑
j=2

D̂(jj)
S

(
1− (d− 1)p(jj)

3

)
+ ∑

j<k
D̂(jk)

S

(
dp(jk)

1 − 1/2
)
+ ∑

j<k
D̂(jk)

Sc

(
dp(jk)

2 − 1/2
)

. (24)

One can see that, in this representation, quantizers (23) are coefficients of the components
of symbol of the density matrix.
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The second set of dequantizers is given by matrices

U(11) =
I
d

, U(jj) =
1

d− 1
(I − Ejj) , j = 2, . . . , d,

U(jk) =
1
d
(I + Ejk + Ekj), U(jk)

c =
1
d
(I + i(−Ejk + Ekj)), j < k; j, k = 1, . . . , d,

(25)

where I is a d× d identity matrix. These dequantizers have traces equal to one, and they are
Hermitian positive definite matrices; therefore, they can be considered as density matrices
for some physical states, and they are not projectors.

The corresponding set of quantizers includes operators acting on the d-dimensional
Hilbert space; these operators have the matrices

D(11) = dI + (−d + 1)E11 +
1
2

(
(−1 + i) ∑

m<n
Emn + (−1− i) ∑

m<n
Enm

)
,

D(jj) = (d− 1)(E11 − Ejj), j = 2, . . . , d. (26)

D(jk) =
1
2

d(Ejk + Ekj), D(jk)
c =

i
2

d(−Ejk + Ekj), j < k; j, k = 1, . . . , d.

The matrices (25) and (26) satisfy the orthogonality condition

Tr
(
U(jk)D(mn)) = δ(jm) δ(kn). (27)

The components of symbol of the density matrix (21) corresponding to dequantizers (25)
are the probabilities p(jk)

l ; l = 1, 2, 3 and j, k = 1, . . . , d; they read

Tr
(
U(11)ρ

)
= p(11)

3 =
1
d

, Tr
(
U(jj)ρ

)
= p(jj)

3 , j = 2, . . . , d,

Tr
(
U(jk)ρ

)
= p(jk)

1 , Tr
(
U(jk)

c ρ
)
= p(jk)

2 , j < k; j, k = 1, . . . , d.
(28)

With the set of quantizers (22) and symbol (24), one can reconstruct the density matrix (20),

ρ =
d

∑
j=1

D(jj)p(jj)
3 + ∑

j<k
D(jk)p(jk)

1 + ∑
j<k

D(jk)
c p(jk)

2 . (29)

As mentioned above the usual method to construct the set of quantizers is to use
the orthogonality condition (27), i.e., this method assumes to consider (27) as a system
of algebraic equations. The solutions to this system of equations are matrix elements
of operators D̂(mn), which form the set of quantizers. But this way may be too tedious.
However, in order to find a set of quantizers corresponding to a certain set of dequntaizers,
it is not necessary to solve (27), but it is enough to calculate components (28) of symbol
of the density operator and present it in the form (29). Then one has to compare the
original matrix form of the density matrix with its representation (29), and this comparison
immediately provides the explicit form of quantizers.

This approach is valid not only for the density operator but it can be used for the other
operators as well. Now let us look how sets of quantizers and dequantizers, whose symbol
components are connected by linear relation (18), are related to each other; in the general
case, this relation is given by (19). Now we show how this dependence looks for qudit
states (21). For such a state, we consider two sets of dequantizers (10) and (25) with the
corresponding sets of symbol components (22) and (28), and relations (18) take the form
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p(11)
3 =

d

∑
l=1

mll = 1, p(jj)
3 =

d

∑
l=1

mll −mjj = 1−mjj, j = 2, . . . , d,

p(jk)
1 = mjk

1 +
1
2

d

∑
l=1

mll , p(jk)
2 = mjk

2 +
1
2

d

∑
l=1

mll , j < k; j, k = 1, . . . , d.

(30)

We see that this system is not tedious. In view of equation (29), one can find the dequantizers
corresponding to symbol components (28).

5. Example of the Ququart State

As an example, we consider the case d = 4. This example corresponds to the ququart
state; this state can be either pure or mixed one. The states are described by the Hermitian
density operator ρ̂ acting on the four-dimensional Hilbert space. The density operator is
associated with the density matrix, which we express in terms of probabilities. We will
consider the case of photon states created in the down-conversion process.

We write the density 4 × 4-matrix of the ququart state in terms of four columns
denoted as

ρ =
(

A B C D
)
,

with

A =

3p(22)
3 + 3p(33)

3 + 3p(44)
3 − 2

(2p(12)
1 − 1/2) + i(2p(12)

2 − 1/2)
(2p(13)

1 − 1/2) + i(2p(13)
2 − 1/2)

(2p(14)
1 − 1/2) + i(2p(14)

2 − 1/2)

, B =

(2p(12)
1 − 1/2)− i(2p(12)

2 − 1/2)
1− 3p(22)

3

(2p(23)
1 − 1/2) + i(2p(23)

2 − 1/2)
(2p(24)

1 − 1/2) + i(2p(24)
2 − 1/2)

,

C =

(2p(13)
1 − 1/2)− i(2p(13)

2 − 1/2)
(2p(23)

1 − 1/2)− i(2p(23)
2 − 1/2)

1− 3p(33)
3

(2p(34)
1 − 1/2) + i(2p(34)

2 − 1/2)

, D =

(2p(14)
1 − 1/2)− i(2p(14)

2 − 1/2)
(2p(24)

1 − 1/2)− i(2p(24)
2 − 1/2)

(2p(34)
1 − 1/2)− i(2p(34)

2 − 1/2)
1− 3p(44)

3

.

(31)

Now the matrices of dequantizers (25) take the form

U(11) =
1
4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, U(22) =
1
3


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

, U(33) =
1
3


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

,

U(44) =
1
3


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

, U(12) =
1
4


1 1 0 0
1 1 0 0
0 0 1 0
0 0 0 1

, U(12)
c =

1
4


1 −i 0 0
i 1 0 0
0 0 1 0
0 0 0 1

,

U(13) =
1
4


1 0 1 0
0 1 0 0
1 0 1 0
0 0 0 1

, U(13)
c =

1
4


1 0 −i 0
0 1 0 0
i 0 1 0
0 0 0 1

, U(14) =
1
4


1 0 0 1
0 1 0 0
0 0 1 0
1 0 0 1

,

U(23) =
1
4


1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

, U(23)
c =

1
4


1 0 0 0
0 1 −i 0
0 i 1 0
0 0 0 1

, U(24) =
1
4


1 0 0 0
0 1 0 1
0 0 1 0
0 1 0 1

,
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U(24)
c =

1
4


1 0 0 0
0 1 0 −i
0 0 1 0
0 i 0 1

, U(34) =
1
4


1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 1

, U(34)
c =

1
4


1 0 0 0
0 1 0 0
0 0 1 −i
0 0 i 1

,

U(14)
c =

1
4


1 0 0 −i
0 1 0 0
0 0 1 0
i 0 0 1

. (32)

Dequantizers (32) have traces equal to one, also they are Hermitian positive definite
matrices; therefore, we can consider them as density matrices for some physical states.

The components of symbol of the density matrix (31) corresponding to dequantiz-
ers (32) read

Tr
(
U(11)ρ

)
= p(11)

3 = 1/4, Tr
(
U22ρ

)
= p(22)

3 , Tr
(
U33ρ

)
= p(33)

3 , Tr
(
U44ρ

)
= p(44)

3 ,

Tr
(
U(12)ρ

)
= p(12)

1 , Tr
(
U(13)ρ

)
= p(13)

1 , Tr
(
U(14)ρ

)
= p(14)

1 , Tr
(
U(23)ρ

)
= p(23)

1 ,

Tr
(
U(24)ρ

)
= p(24)

1 , Tr
(
U(34)ρ

)
= p(34)

1 , Tr
(
U(12)

c ρ
)
= p(12)

2 , Tr
(
U(13)

c ρ
)
= p(13)

2 ,

Tr
(
U(14)

c ρ
)
= p(14)

2 , Tr
(
U(23)

c ρ
)
= p(23)

2 , Tr
(
U(24)

c ρ
)
= p(24)

2 , Tr
(
U(34)

c ρ
)
= p(34)

2 .

(33)

The set of quantizers corresponding to dequantizers (32) are

D(11) = 2


−4 −1 + i −1 + i −1 + i
−1− i 2 −1 + i −1 + i
−1− i −1− i 2 −1 + i
−1− i −1− i −1− i 2

, D(22) =


3 0 0 0
0 −3 0 0
0 0 0 0
0 0 0 0

,

D(33) =


3 0 0 0
0 0 0 0
0 0 −3 0
0 0 0 0

, D(12) =


0 2 0 0
2 0 0 0
0 0 0 0
0 0 0 0

, D(12)
c =


0 −2i 0 0
2i 0 0 0
0 0 0 0
0 0 0 0

,

D(13) =


0 0 2 0
0 0 0 0
2 0 0 0
0 0 0 0

, D(13)
c =


0 0 −2i 0
0 0 0 0
2i 0 0 0
0 0 0 0

, D(14) =


0 0 0 2
0 0 0 0
0 0 0 0
2 0 0 0

,

D(23) =


0 0 0 0
0 0 2 0
0 2 0 0
0 0 0 0

, D(23)
c =


0 0 0 0
0 0 −2i 0
0 2i 0 0
0 0 0 0

, D(24) =


0 0 0 0
0 0 0 2
0 0 0 0
0 2 0 0

,

D(24)
c =


0 0 0 0
0 0 0 −2i
0 0 0 0
0 2i 0 0

, D(34) =


0 0 0 0
0 0 0 0
0 0 0 2
0 0 2 0

, D(34)
c =


0 0 0 0
0 0 0 0
0 0 0 −2i
0 0 2i 0

,

D(44) =


3 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −3

, D(14)
c =


0 0 0 −2i
0 0 0 0
0 0 0 0
2i 0 0 0

. (34)

In view of quantizers (34) and symbol (33), the density matrix (31) can be presented in
the form

ρ = D(11)p(11)
3 + D(22)p(22)

3 + D(33)p(33)
3 + D(44)p(44)

3 + D(12)p(12)
1 + D(13)p(13)

1
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+D(14)p(14)
1 + D(23)p(23)

1 + D(24)p(24)
1 + D(34)p(34)

1 + D(12)
c p(12)

2 + D(13)
c p(13)

2

+D(14)
c p(14)

2 + D(23)
c p(23)

2 + D(24)
c p(24)

2 + D(34)
c p(34)

2 . (35)

The other set of dequantizer matrices is given by operators (10); in the case of ququart,
they read

U(11)
S =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, U(22)
S =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

, U(33)
S =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

,

U(44)
S =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

, U(12)
S =

1
2


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

, U(12)
Sc =

1
2


0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

,

U(13)
S =

1
2


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

, U(13)
Sc =

1
2


0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

, U(14)
S =

1
2


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

,

U(23)
S =

1
2


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

, U(23)
Sc =

1
2


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

, U(24)
S =

1
2


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

,

U(24)
Sc =

1
2


0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

, U(34)
S =

1
2


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

, U(34)
Sc =

1
2


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

,

U(14)
Sc =

1
2


0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

. (36)

Since the set of dequantizers (36) is self-dual, all operators from this set are orthogonal to
each other; therefore, the corresponding quantizers are exactly the same as dequantizers
up to a factor.

6. Qutrit and Ququart in the Spontaneous Parametric Down-Conversion Process

The simplest states used in quantum information are qubits given as superpositions
of any two basis quantum states. If a system under consideration consists of two subsys-
tems, each being the qubit state, the bipartite wave function of the composite two-qubit
state, in general case, is given by a sum of direct products of the qubit wave functions.
Biphoton states can be formed using the spontaneous parametric down-conversion (SPDC)
process [47]. It is a nonlinear optical process, where the pump photon spontaneously splits
into two photons of lower energies. It is an important process in quantum optics for the
generation of single photons and entangled photon pairs. The SPDC process has found
many applications in various fields of research; see, for example, [48].

Selecting the crystal and its orientation along with the manipulation of the polarization
of SPDC-generated photons, it is possible to construct the biphoton qutrit and ququart
states of a general type [35,47,49,50].
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In the simplest case, the SPDC HamiltonianH reads

Ĥ = h̄
(

ωp b̂†
p b̂p + ωs â†

s âs + ωi â†
i âi + gâ†

s â†
i b̂p + g∗ âs âi b̂†

p

)
, ωp = ωs + ωi. (37)

Here, b̂†
p and b̂p are the creation and annihilation operators of the pump mode, the â†

s , âs and
â†

i , âi are the creation and annihilation operators for the photons of the signal (s) and idle (i)
modes. The mathematical properties of such three-boson and four-boson Hamiltonians
were investigated in [51–53].

During the SPDC process, the photon states corresponding to the horizontal H and
the vertical V polarizations occur. Also it is possible that all photons with the same
polarization have the same frequency. For example, photons with the vertical polarization
have frequency ωi, and photons with the horizontal polarization have frequency ωs. In this
case, there are three basis states. The state vector |Ψ(3)〉 describes the photons created in
the SPDC process, and this state of photons is the pure state; the state vector reads

|Ψ(3)〉 = C1|2H , 0〉+ C2|1H , 1V〉+ C3|0, 2V〉

=
1√
2
(C1 â†2

H +
√

2C2 â†
H b̂†

V + C3b̂†2
V )|0〉, |C1|2 + |C2|2 + |C3|2 = 1, (38)

where |0〉 is the vacuum state and â†
H , âH and b̂†

V , b̂V are the creation and annihilation
operators of the horizontal H and vertical V modes, respectively.

Now we discuss the physical meaning of the qutrit-state density matrix elements,
using the probability representation of quantum states. The corresponding density ma-
trix reads

ρΨ(3) =

C1∗
1 C1

1 C1∗
2 C1

1 C1∗
3 C1

1
C1∗

1 C1
2 C1∗

2 C1
2 C1∗

3 C1
2

C1∗
1 C1

3 C1∗
2 C1

3 C1∗
3 C1

3

. (39)

In view of (21), after some algebra we arrive at the general form of qutrit-state density
matrix written in the introduced probability representation of the qutrit state; it is

ρ3 =
1
2


4p(33)

3 + 4p(22)
3 − 2 (3p(12)

1 − 1)− i(3p(12)
2 − 1) (3p(13)

1 − 1)− i(3p(13)
2 − 1)

(3p(12)
1 − 1) + i(3p(12)

2 − 1) 2− 4p(22)
3 (3p(23)

1 − 1)− i(3p(23)
2 − 1)

(3p(13)
1 − 1) + i(3p(13)

2 − 1) (3p(23)
1 − 1) + i(3p(23)

2 − 1) 2− 4p(33)
3

. (40)

It is a generic form of the density matrix of an arbitrary qutrit state, both mixed and
pure ones. So there exist some relations between matrix elements of matrices (39) and (40);
two of them read

p(22)
3 =

1
2
(1− |C1

2 |2), p(33)
3 =

1
2
(1− |C1

3 |2). (41)

The real nonnegative numbers p(22)
3 and p(33)

3 are probabilities determined by (33) as traces
of products of the density matrix and dequantizers.

Now we can explain the physical meaning of these probabilities. In quantum me-
chanics, each physical system state is associated with a Hilbert space. Any measurement
upon a physical system is represented by a self-adjoint operator on the Hilbert space
called the observable. The eigenvectors of such an operator form an orthonormal basis
for the Hilbert space, and each possible outcome of the measurement corresponds to one
of the vectors constituting the basis. For each measurement which can be fulfilled with
the system, the probability distribution over the outcomes of the measurement can be
calculated, in view of the density operator. Such a procedure is known as Born’s rule [54].
Born’s rule states that

p(xi) = Tr
(

P̂i ρ̂
)
, (42)



Symmetry 2021, 13, 131 13 of 17

where ρ̂ is the density operator, and P̂i is the projection operator onto the basis vector
corresponding to the measurement outcome xi. Born’s rule associates the probability with
each unit vector in the Hilbert space in such a way that the sum of these probabilities is
equal to unity for any set of unit vectors constituting an orthonormal basis.

In the case of qutrit-state vector (38), the state vectors

~v(2,0) = |2H , 0〉, ~v(1,1) = |1H , 1V〉, ~v(0,2) = |0, 2V〉 (43)

form the basis in the three-dimensional Hilbert space. The corresponding matrices of the
projectors read

P̂(2,0) =

1 0 0
0 0 0
0 0 0

, P̂(1,1) =

0 0 0
0 1 0
0 0 0

, P̂(0,2) =

0 0 0
0 0 0
0 0 1

. (44)

Now according to Born’s rule, we can define the probabilities p(2,0), p(1,1), and p(0,2) and
rewrite relations (42) as follows:

p(2,0) = Tr
(

P̂(2,0)ρ̂
3) = |C2

1 |2,

p(1,1) = Tr
(

P̂(1,1)ρ̂
3) = |C2

2 |2, (45)

p(0,2) = Tr
(

P̂(0,2)ρ̂
3) = |C2

3 |2 =
1
2
(1− |C1

3 |2).

Born’s rule is valid for both pure and mixed states; in the case of pure states, formula (42) reads

p(xi) = |〈Ψi|Ψ〉|2, (46)

where Ψi is the basis vector corresponding to the measurement outcome xi.
In the case of qutrit-state vector (38), the basis vectors are given by (43), and rela-

tions (45) and (46) take the form

p(2,0) = |〈2, 0|Ψ(3)〉|2 = |C2
1 |2,

p(1,1) = |〈1, 1|Ψ(3)〉|2 = |C2
2 |2, (47)

p(0,2) = |〈0, 2|Ψ(3)〉|2 = |C2
3 |2 =

1
2
(1− |C1

3 |2).

Here, vectors 〈2, 0|, 〈1, 1|, and 〈0, 2| determine the projectors similar to P̂(2,0), P̂(1,1), and P̂(0,2).
Formulas (44) provide the matrix form of these projectors. We see that the real nonnegative
numbers p(22)

3 and p(33)
3 , appearing as traces of products of the density matrix (40) with

corresponding dequantizers, are probabilities (45) generated by projectors (44). These prob-
abilities determine the structure of the state (38); such a construction can be generalized to
an arbitrary qudit.

In the SPDC process, the other experimental condition, where photons with the same
polarization have different frequencies, can take place, namely photons with the horizontal
polarization have both frequency ωs and frequency ωi. Similarly, photons with the vertical
polarization also have both frequency ωs and frequency ωi. In this case, the biphoton wave
function describes a ququart state with the state vector

|Ψ(4)〉 = C1 |1H,ωi , 1H,ωs〉+ C2 |1H,ωi , 1V,ωs〉+ C3 |1V,ωi , 1H,ωs〉+ C4 |1V,ωi , 1V,ωs〉
= (C1 â†

H,ωi
â†

H,ωs
+ C2 â†

H,ωi
â†

V,ωs
+ C3 â†

V,ωi
â†

H,ωs
+ C4 â†

V,ωi
â†

V,ωs
) |0〉 , (48)

|C1|2 + |C2|2 + |C3|2 + |C4|2 = 1.

Now we consider the example of creating a ququart state. The density matrix (31)
completely determines an arbitrary pure ququart state. Thus, in order to reconstruct the
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unknown ququart state, one should measure all its matrix elements; the setup used for this
purpose can be found in [36], where the pump radiation of a He-Cd laser with a wavelength
of 325 nm and the horizontal polarization falls on a Lithium Iodate crystal LiIO3, and a
biphoton emerges from this nonlinear crystal. It was shown in [36,55] that biphoton state
created in this process is the ququart with the coefficients

C1 = −0.0555− 0.204 i, C2 = −0.0059 + 0.005 i, C3 = −0.0425 + 0.0052 i, C4 = +0.9973. (49)

Here, H and V are the designations of the polarization modes in the vertical–horizontal
laboratory polarization basis.

7. Conclusions

To conclude, we formulate the main results of our study.
We presented the probability representation of qudit states and found their quantizers

and dequantizers in explicit forms. Examples of qutrit and ququart systems were discussed.
The density matrix elements of qudit states were expressed in terms of probabilities, which
can be experimentally measured. We suggested a possibility to analyze the photon states
arising in the process of parametric down conversion. In the SPDC process, the qutrit
photon states are created; for pure states, the probabilities determining the density matrices
of created states were found from the experimental data of [36,55]. The generalization of
the developed approach to other qudit states was studied.

In this paper, we considered qudits of arbitrary dimension and described the structure
of their density operators. We developed the general method for constructing quantizer
and dequantizer operators for these density operators and found the symbols of the
density operator corresponding to such sets of quantizers and dequantizers. These sets of
quantizers and dequantizers can be constructed in various ways. The most interesting sets
are quantizer and dequantizer, whose symbols have a physical meaning and are directly
measurable quantities. We considered two types of such quantities—average values and
probabilities of the values and described them using the example of qutrit and ququart
states. In general, the relation of these values to the symbols of the density operator requires
additional research.

The formalism developed has important physical applications. It can be used to find
various characteristics of complex quantum states. This includes restoring elements of the
density matrix of states that occur in various nonlinear processes. We considered such an
example of the down-conversion process and will look at other examples later. For the
experimentally available qutrit and ququart states, realized as photon states generated
in the SPDC process, we obtained the explicit probability representation of these states
expressed in terms of measurable probabilities. For the ququart pure state with the state
vector (48), the 4 × 4 density matrix has matrix elements ρjk = CjC∗k , where numbers Cj
given by Equation (49) are experimentally measured. This means that we have the explicit
form of the ququart density matrix.

Our main result here is the probability representation of the obtained photon-state
density matrix. Since we know how the density matrix elements ρjk are expressed in terms

of probabilities, we know the probabilities Pjk
1,2,3 for j = 1, 2, 3, 4, since they are functions

of the measured parameters Cj of the ququart state of the photons created in the SPDC
process. Thus, we showed that the qutrit and ququart states of photons created in the SPDC
process and experimentally studied in [55] are completely determined by the probabilities.
The set of experimentally obtained probabilities includes complete information on the
quantum states of the photons.

According to the approach of constructing the associative algebras and Lie algebras
by means of quantizer–dequantizer operators [21,22] for qudit states (25) and (26) and
ququart states (32) created in down-conversion processes, one can construct the associative
algebras and Lie algebras related to the down-conversion process. This problem is closely
related to the ideas and methods of quantum tomography. As part of our approach, we
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plan to look at different variants of quantum tomography from a single point of view and
establish a connection between them.
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