7,835 research outputs found

    Resonant tuning of Langevin transducers for ultrasonically assisted machining applications

    No full text
    This paper provides a fundamental study into the trade-offs between the location of piezoceramic elements, resonant frequency, and achievable ultrasonic vibration amplitude at the working end of the Bolted Langevin-style Transducers (BLT) for Ultrasonically Assisted Machining (UAM) applications. Analytical models and Finite Element (FE) models are established for theoretical study, which are then validated by experiments on four real electro-mechanical transducers. Results suggest that resonant frequency and oscillation amplitude of the BLTs depend essentially on the dimensions of the system and the location of piezoceramic elements. The highest resonant frequency and the maximal vibration are achieved when the piezoceramic elements are at the longitudinal displacement node, where the highest effective electro-mechanical coupling coefficient value is exhibited. However, the minimal resonant frequency and the lowest vibration, which is almost equal to zero, are observed when the piezoceramic elements are located at the displacement anti-node. In addition, the longitudinal displacement node locations are dependent on the resonant frequency of the devices rather than the locations of the piezoceramic elements

    The Physics of Heavy Flavours at SuperB

    Full text link
    This is a review of the SuperB project, covering the accelerator, detector, and highlights of the broad physics programme. SuperB is a flavour factory capable of performing precision measurements and searches for rare and forbidden decays of Bu,d,sB_{u,d,s}, DD, Ď„\tau and ÎĄ(nS)\Upsilon({\mathrm{nS}}) particles. These results can be used to test fundamental symmetries and expectations of the Standard Model, and to constrain many different hypothesised types of new physics. In some cases these measurements can be used to place constraints on the existence of light dark matter and light Higgs particles with masses below 10GeV/c210GeV/c^2. The potential impact of the measurements that will be made by SuperB on the field of high energy physics is also discussed in the context of data taken at both high energy in the region around the \Upsilon({\mathrm{4S}})$, and near charm threshold.Comment: 49 pages, topical review submitted to J. Phys

    Tidal Venuses: Triggering a Climate Catastrophe via Tidal Heating

    Full text link
    Traditionally stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high enough levels to induce a runaway greenhouse for a long enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets "Tidal Venuses," and the phenomenon a "tidal greenhouse." Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits (i.e. with negligible tidal heating) in the habitable zone (HZ). However, these planets are not habitable as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. Planets orbiting stars with masses <0.3 solar masses may be in danger of desiccation via tidal heating. We apply these concepts to Gl 667C c, a ~4.5 Earth-mass planet orbiting a 0.3 solar mass star at 0.12 AU. We find that it probably did not lose its water via tidal heating as orbital stability is unlikely for the high eccentricities required for the tidal greenhouse. As the inner edge of the HZ is defined by the onset of a runaway or moist greenhouse powered by radiation, our results represent a fundamental revision to the HZ for non-circular orbits. In the appendices we review a) the moist and runaway greenhouses, b) hydrogen escape, c) stellar mass-radius and mass-luminosity relations, d) terrestrial planet mass-radius relations, and e) linear tidal theories. [abridged]Comment: 59 pages, 11 figures, accepted to Astrobiology. New version includes an appendix on the water loss timescal

    Next generation communications satellites: multiple access and network studies

    Get PDF
    Efficient resource allocation and network design for satellite systems serving heterogeneous user populations with large numbers of small direct-to-user Earth stations are discussed. Focus is on TDMA systems involving a high degree of frequency reuse by means of satellite-switched multiple beams (SSMB) with varying degrees of onboard processing. Algorithms for the efficient utilization of the satellite resources were developed. The effect of skewed traffic, overlapping beams and batched arrivals in packet-switched SSMB systems, integration of stream and bursty traffic, and optimal circuit scheduling in SSMB systems: performance bounds and computational complexity are discussed

    Influence of subunit structure on the oligomerization state of light harvesting complexes: a free energy calculation study

    Full text link
    Light harvesting complexes 2 (LH2) from Rhodospirillum (Rs.) molischianum and Rhodopseudomonas (Rps.) acidophila form ring complexes out of eight or nine identical subunits, respectively. Here, we investigate computationally what factors govern the different ring sizes. Starting from the crystal structure geometries, we embed two subunits of each species into their native lipid-bilayer/water environment. Using molecular dynamics simulations with umbrella sampling and steered molecular dynamics, we probe the free energy profiles along two reaction coordinates, the angle and the distance between two subunits. We find that two subunits prefer to arrange at distinctly different angles, depending on the species, at about 42.5 deg for Rs. molischianum and at about 38.5 deg for Rps. acidophila, which is likely to be an important factor contributing to the assembly into different ring sizes. Our calculations suggest a key role of surface contacts within the transmembrane domain in constraining these angles, whereas the strongest interactions stabilizing the subunit dimers are found in the C-, and to a lesser extent, N-terminal domains. The presented computational approach provides a promising starting point to investigate the factors contributing to the assembly of protein complexes, in particular if combined with modeling of genetic variants.Comment: 28 pages, 7 figures, LaTeX2e - requires elsart.cls (included), submitted to Chemical Physic

    Abundance analysis of Am binaries and search for tidally driven abundance anomalies - III. HD116657, HD138213, HD155375, HD159560, HD196544 and HD204188

    Full text link
    We continue here the systematic abundance analysis of a sample of Am binaries in order to search for possible abundance anomalies driven by tidal interaction in these binary systems. New CCD observations in two spectral regions (6400-6500, 6660-6760 AA) of HD116657, HD138213, HD155375, HD159560, HD196544 and HD204188 were obtained. Synthetic spectrum analysis was carried out and basic stellar properties, effective temperatures, gravities, projected rotational velocities, masses, ages and abundances of several elements were determined. We conclude that all six stars are Am stars. These stars were put into the context of other Am binaries with 10 < Porb < 200 days and their abundance anomalies discussed in the context of possible tidal effects. There is clear anti-correlation of the Am peculiarities with v sin i. However, there seems to be also a correlation with the eccentricity and may be with the orbital period. The dependence on the temperature, age, mass, and microturbulence was studied as well. The projected rotational velocities obtained by us were compared to those of Royer et al. (2002) and Abt & Morrell (1995).Comment: 11 pages, 3 tables, 12 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Models of the SL9 Impacts II. Radiative-hydrodynamic Modeling of the Plume Splashback

    Full text link
    We model the plume "splashback" phase of the SL9 collisions with Jupiter using the ZEUS-3D hydrodynamic code. We modified the Zeus code to include gray radiative transport, and we present validation tests. We couple the infalling mass and momentum fluxes of SL9 plume material (from paper I) to a jovian atmospheric model. A strong and complex shock structure results. The modeled shock temperatures agree well with observations, and the structure and evolution of the modeled shocks account for the appearance of high excitation molecular line emission after the peak of the continuum light curve. The splashback region cools by radial expansion as well as by radiation. The morphology of our synthetic continuum light curves agree with observations over a broad wavelength range (0.9 to 12 microns). A feature of our ballistic plume is a shell of mass at the highest velocities, which we term the "vanguard". Portions of the vanguard ejected on shallow trajectories produce a lateral shock front, whose initial expansion accounts for the "third precursors" seen in the 2-micron light curves of the larger impacts, and for hot methane emission at early times. Continued propagation of this lateral shock approximately reproduces the radii, propagation speed, and centroid positions of the large rings observed at 3-4 microns by McGregor et al. The portion of the vanguard ejected closer to the vertical falls back with high z-component velocities just after maximum light, producing CO emission and the "flare" seen at 0.9 microns. The model also produces secondary maxima ("bounces") whose amplitudes and periods are in agreement with observations.Comment: 13 pages, 9 figures (figs 3 and 4 in color), accepted for Ap.J. latex, version including full figures at: http://oobleck.tn.cornell.edu/jh/ast/papers/slplume2-20.ps.g

    Developing and validating a competency framework for advanced pharmacy practice

    Get PDF
    AIM. To develop and validate an advanced practice competency framework. DESIGN. Literature review and expert panel discussions. SUBJECTS AND SETTING. Consensus panel membership drawn from across the NHS. Framework mapped against the practice of leading-edge practitioners drawn from primary care and national clinical pharmacy groups. RESULTS. From a literature review 34 competencies were identified and grouped into 6 competency domains. Consensus development panels validated the descriptor terms used to define competency at "foundation", "excellence", or "mastery" level practice. 28 (of the 35 surveyed) practitioners mapped their practice using the framework. The majority indicated that their practice was at "mastery" for the "expert practice" and "building relationships" clusters, although a broader level of activity was reported for the other four clusters. CONCLUSIONS. This study developed an evidence-based advanced practice competency framework, grounded in the multi-disciplinary literature and validated by expert opinion. This provides a map of the key generic skills, knowledge and attributes required by individuals practising at this higher level. The competencies and descriptors developed by this research could be used as a template for the development of consultant pharmacists
    • …
    corecore