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Abstract. When developing mathematical models, especially for control, the practical interest
lies in relatively simple extensions of linear structures that offer improved modelling capabilities.
In this paper a discrete-time input-output Hammerstein-bilinear structure is introduced and its
properties are discussed in detail. It consists of a cascade connection of a static nonlinearity
followed by a dynamic bilinear system. By combining advantages of constituent subsystems
the Hammerstein-bilinear structure allows for both an input dependant dynamic behaviour
(particular property of bilinear systems) and an increased flexibility of the steady-state
characteristic (particular property of Hammerstein models) to be obtained simultaneously.
Modelling capabilities of such structure are evaluated on an air-handling unit that is a part
of an industrial heating, ventilation and air-conditioning system.

1. Introduction

Most, if not all, physical systems are inherently nonlinear, hence they can be satisfactorily
approximated by standard linear modelling techniques only over a rather narrow range of
operation. A need for more flexible structures that allow models to be adequate over wider
operating ranges stems, therefore, rather naturally and has become a prominent and an
important topic of research in the control community, see for instance [1], [2] and [3]. When
developing mathematical models, especially for control, the practical interest lies in relatively
simple extensions of linear structures that offer improved modelling capabilities and whose
properties are well understood. Among others, the frequently considered nonlinear models
include: Hammerstein systems (HS) [4], Wiener systems (WS) [5], bilinear systems (BS) [6] and
Lure models [7]. A HS comprises of a static nonlinearity followed by a dynamic linear subsystem,
whilst a WS model is a dual of a HS with the order of these elements reversed. A Lure model also
consists of the same two elements but with a static nonlinearity located in the feedback. A BS
is a structure where the output is a function of a product between the output and the input (or
state, in general). Each of these models can be used to mimic certain qualitative behaviour of the
process of interest. A detailed comparison and discussion of their specific features can be found
in [8]. Although relatively simple, by providing enhanced modelling capabilities and permitting
design of efficient dedicated control schemes, these structures have been demonstrated to be of
a great pragmatic utility in many industrial control problems, see [9], [10], [11] and [12]. In this
paper, a discrete-time input-output Hammerstein-bilinear system (HBS) structure is considered
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that consists of a cascade connection of a static nonlinearity followed by a dynamic BS. Such a
model structure combines advantages of its constituent subsystems allowing for both an input
dependant dynamic behaviour (particular property of BS) and an increased flexibility of the
steady-state characteristic (particular property of HS) to be obtained simultaneously. Although
the more general class of nonlinear autoregressive with exogenous input (NARX) models, to
which the HBS belongs, has received interest in the literature, see for instance [13], [7], [3], the
HBS on its own has been given limited attention. This paper aims at improving this situation
by focusing directly on the HBS structure and its properties. Also, an exemplary application to
industrial problem is presented.

uk ykvk = f(uk)
f(·) BS

︸ ︷︷ ︸

static nonlinearity

︸ ︷︷ ︸

dynamic subsystem

Figure 1. Diagrammatic representation of a Hammerstein-bilinear structure.

2. Definition of Hammerstein-bilinear structure

HBS structure is a member of a general family of NARX models, more specifically, it belongs to
a sub-class of models retaining affinity with respect to the output signals, i.e. so-called output
affine models [14]. It is constructed as a cascade connection of a static (memoryless) nonlinearity
followed by a dynamic time-invariant BS, see Figure 1, and is given by

yk =

na∑

j=1

ajyk−j +

nb∑

i=1

bivk−i +

na∑

j=1

nb∑

i=1

ηijvk−iyk−j, vk = f(uk) (1)

with the bilinearity defined as a product between system output yk and the intermediate
input variable vk, and f(·) being a general scalar static nonlinear function. To facilitate
subsequent identification it is advantageous to restrict f(·) to functions that are smooth, linear
in the parameters and have continuous derivative. Such functions that are commonly used are
polynomials, see [4], [15] and [12], where HS models are considered. (Because the focus is placed
on properties of the HBS structure, additional signals modelling disturbances are not considered.)
The input uk, before entering the dynamic BS and yielding the overall system output yk,
undergoes a nonlinear transformation through f(·) to form the intermediate input signal vk.
Not all bilinear coefficients must necessarily be present in (1), hence a particular structure can
be obtained by setting selected ηij to zero. Driven by control pragmatism, considerations are
restricted here to structures whose dynamic part is not purely bilinear, i.e. not all b parameters
are simultaneously null. The HBS can be interpreted as a generalisation of both of its constituent
subsystems, i.e. the HS and BS structures. In particular, a BS is obtained from (1) by setting
uk = vk, i.e. by selecting f(x) = x, which gives

yk =

na∑

j=1

ajyk−j +

nb∑

i=1

biuk−i +

na∑

j=1

nb∑

i=1

ηijuk−iyk−j. (2)

Similarly, a HS is obtained by setting ηij = 0 ∀ i, j in (1), which leads to

yk =

na∑

j=1

ajyk−j +

nb∑

i=1

bivk−i, vk = f(uk). (3)
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Also, a linear structure can be obtained by imposing both restrictions simultaneously, i.e.
ηij = 0 ∀i, j and uk = vk.

The HS structure is of particular interest when modelling processes with nonlinear actuators
such as flow controlling valves. Also, more generally, it is useful in situation where the dynamic
behaviour can be approximated sufficiently well via a linear model, whilst nonlinearity is
manifested in the overall steady-state characteristic, see [4] and [15]. A BS model structure
is useful when dealing with applications where there is heat exchange and/or transfer of heat
is involved, see [16] and [17]. As well, there are examples of BS arising naturally that can be
found when modelling various chemical processes, where, quite commonly the exogenous inputs
are flow rates.

Because the HBS structure comprises HS and BS as its special cases it is applicable in
situations where both the steady-state characteristic and the dynamics are nonlinear. The HBS
can, alternatively, be expressed as the following NARX difference equation

yk =

na∑

j=1

ajyk−j +

nb∑

i=1

bif(uk−i) +

na∑

j=1

nb∑

i=1

ηijf(uk−i)yk−j. (4)

By postulating that the function f(·) is linear in the parameters, denoted by α, the difference
equation (4), becomes bilinear in both i.e. input-output and its coefficients, i.e. a, b, η and
α. This property significantly facilitates the parameter estimation problem. Analogously to the
classification of input-output BS, HBS structures can be divided into three main categories: i)
subdiagonal ηij = 0 ∀j > i, ii) superdiagonal ηij = 0 ∀j < i and iii) diagonal ηij = 0 ∀j 6= i. Note
that from a physical point of view the class of superdiagonal HBS appears to be a somewhat
peculiar because it suggests that future values of input are correlated with past values of system
output. The HBS representation (4) can be re-expressed such that the resulting structure
exhibits input (or, alternatively, output) dependency of the parameters. The corresponding
system with input dependent parameters akj is given by

yk =
na∑

j=1

akj yk−j +

nb∑

i=1

bif(uk−i), akj = aj +

nb∑

i=1

ηijf(uk−i). (5)

In terms of a quasi-transfer function representation, the HBS can be expressed as

yk = G(q−1)f(uk), (6)

where the input dependent quasi-transfer function of the constituent BS is given by

G(q−1) =
yk
vk

=

∑nb

i=1 q
−ibi

1−∑na

j=1 q
−jakj

=

∑nb

i=1 q
−ibi

1−∑na

j=1 q
−j [aj +

∑nb

i=1 ηijf (uk−i)]
. (7)

From a structural point of view, an advantage resulting from the interpretation of the constituent
BS model as a linear time-varying system is that standard well understood notions from classical
linear system theory such as system time-constants, damping/natural frequency and steady-state
gain are to large extent retained. As a consequence, many existing methods developed for linear
systems, including both control and identification, can be readily extended and transferred to
the BS case.

3. Steady-state properties

Considering (6)-(7) the steady-state characteristic of the HBS can be expressed as a combination
of the steady-states of the constituent static nonlinearity and the BS. Therefore, before discussing
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steady-state properties of the HBS structure, the steady-state behaviour of the component
subsystems is analysed first in detail.

The steady-state characteristic of the overall HBS is given by

yss = gBS(vss)vss (8)

where the subscript ss denotes the steady-state value. The steady-state gain gBS of the
component BS is given by

gBS(vss) =
yss
vss

=

∑nb

i=1 bi
1−∑na

j=1 [aj +
∑nb

i=1 ηijf (uss)]
=

b̄

1− ā− η̄vss
, (9)

where ā =
∑na

j=1 aj , b̄ =
∑nb

i=1 bi and η̄ =
∑na

i=1

∑nb

j=1 ηij . It is observed that the steady-state
characteristic of the HBS is, firstly, nonlinear, and, secondly, dependent on both the input and
the form of f(·). Also, note that ā+ η̄vss 6= 1 for yss to remain bounded.

3.1. Steady-state behaviour of Hammerstein systems

In the case of HS, see (3), the steady-state gain is equal to the static nonlinearity f(·) scaled by
a constant gain gL of the linear dynamic subsystem, i.e.

yss = gLf(uss), gL =
yss
vss

=

∑nb

i=1 bi
1−∑na

j=1 aj
=

b̄

1− ā
(10)

with the assumption that ā 6= 1. In contrast to the BS model, the HS structure can exhibit
IM, if the static input nonlinearity is non-strictly monotonic. However, similarly to the BS
structure, it is also inherently incapable of exhibiting OM. The steady-state asymptotes depend
on a particular form of the static input nonlinearity f(·), hence cannot be characterised for a
generic case.

3.2. Steady-state behaviour of bilinear subsystem

Depending on a value of η̄ the steady-state of a BS, see (2), can exhibit either saturation or
‘burst’ characteristics. Whilst a constant steady-state gain is obtained if η̄ = 0, in which case
the BS is so-called static-linear, see [14]. Note that a particular case for which the condition
η̄ = 0 is satisfied occurs when ηij = 0 ∀i, j, i.e. when the BS is reduced to a linear system.
An illustrative plot showing representative steady-state characteristics of an arbitrary BS for
a range of different values of η̄ is given in Figure 2(a). By limiting consideration only to the
quadrant where both uss ≥ 0 and yss ≥ 0, the three darker curves above the black dashed
line correspond to the cases where η̄ > 0, i.e. a so-called positive bilinearity (burst - typical
of exothermic chemical processes). Whilst the remaining three brighter curves below the black
dashed line correspond to η̄ < 0, i.e. a so-called negative bilinearity (typical of many industrial
systems with saturation nonlinearities) [11].

A crucial property of a model is the extent to which it can mimic the steady-state
characteristics of a process. In this connection, the existence of a steady-state multiplicity
is of interest. Following [2], the input (output) multiplicity is defined as the property where a
single steady-state output (input) corresponds to multiple steady-state inputs (outputs). The
input multiplicity (IM) property appears to be more frequently encountered phenomena than
the output multiplicity (OM) and is related to the notion of an ‘optimal’ or ‘sweet’ point in the
process steady-state curve [8]. However, the OM has also been encountered in many industrial
problems, see [7] and the references therein. For the IM to exist the steady-state characteristic
must not be strictly monotonic or, equivalently, must not be invertible.
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(b) An arbitrary HBS.

Figure 2. Illustrative plots showing representative steady-state characteristics for a range of
different values of η̄ parameter. The dashed black line corresponds to a linear system case.

Considering the constituent BS, it is observed that neither IM nor OM are possible. This fact
follows from a property that the corresponding steady-state curve is strictly monotonic, which,
for instance, can be useful when designing nonlinear compensators, see [18] and [11]. However,
for completeness, it is worth noting that generally, in fact, the IM is feasible in a somewhat
degenerate case when yss is constant. Recalling the previously postulated assumption that
ā+ η̄uss 6= 1, this condition is satisfied if b̄ = 0 or uss = 0 or ā = 1. Similarly, a degenerate OM
can also be exhibited in general when uss is constant. The steady-state input as a function of a
steady-state output is given by

uss =
(1− ā)yss
b̄+ η̄yss

, (11)

where it is assumed that b̄+ η̄yss 6= 0. Considering (11), the degenerate OM is present if ā = 1
or yss = 0 or b̄ = 0. Driven by utility for control, these degenerate forms of IM and OM are,
however, deliberately excluded in the remainder of this paper, hence BS structures are treated
as not being able to exhibit any form of multiplicity. Also, it can be verified that the horizontal
asymptote of the steady-state characteristic, obtained for uss → ±∞, is given by −b̄/η, whilst
the vertical asymptote, obtained for yss → ±∞, is given by (1− ā)/η.

3.3. Steady state behaviour of Hammerstein-bilinear structure

Since composed of HS and BS models, the HBS inherits properties of the constituent structures
allowing for an extended range of potential steady-state characteristics to be obtained, when
compared to those feasible for BS. In particular, this includes an important capability of
exhibiting IM. This property is illustrated in Figure 2(b) for an arbitrarily parametrised HBS
with f(·) selected as a third order polynomial and a range of different values of η̄. Similarly as in
the case of HS, the asymptotes of the steady-state characteristic of the overall system cannot be
characterised for a generic case. Furthermore, the HBS structure can behave as a static-linear
system in two cases. Firstly, if the function f(·) is linear, hence the HBS is reduced effectively to
a BS submodel. In this case the condition for static-linearity is satisfied when η̄ = 0. Secondly,
if the static nonlinear function f(·) is selected as an inverse of the steady-state characteristic

corresponding to the component BS, cf. (11), i.e. vss = (1−ā)uss

b̄+η̄uss

assuming b̄ + η̄uss 6= 0. Note

that because the steady-state characteristic of BS is strictly monotonic its inverse exists.
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4. Dynamic properties

Similarly as when discussing behaviour in steady-state, dynamic properties of the HBS structure
depend on its constituent components and hence dynamic properties of HS and BS structures
are analysed first.

4.1. Dynamics of Hammerstein subsystem

One of the important attributes characterising the class of HS structures is that the eigenvalues
of the corresponding linearised HS model are constant thus independent of an operating point.
Therefore, the qualitative behaviour of HS models do not change with the reference and is
determined exclusively by the linear subsystem, see [2], [1]. A direct consequence is that HS
structures are not desirable when modelling processes with operating point dependant dynamics,
such as those with a time-varying time-constant. Also, it is interesting to note that if the
static nonlinearity is swapped with the dynamic linear subsystem leading to a WS, the same
observation is no longer valid, see [15]. Consequently, HS are useful in cases where the system
dynamics is reasonably linear and nonlinearities can be attributed to the steady-state behaviour.

4.2. Dynamics of bilinear subsystem

Consider the quasi-transfer function representation of a BS, which is obtained from (7) by
imposing vk = uk, i.e.

G(q−1) =

∑nb

i=1 q
−ibi

1−
∑na

j=1 q
−j [aj +

∑nb

i=1 ηijuk−i]
. (12)

It is observed from (12) that both static and dynamic behaviour is input dependant.
Consequently, the (time-varying equivalent) poles of the BS structure are determined by the
instantaneous roots of the denominator in (12). This can be illustrated by a simple, yet
representative, example of a first order diagonal BS model expressed in a quasi-transfer function

form as G(q−1) = q−1b1
1−q−1(a1+η11uk−1)

with the time-varying discrete pole located at a1 + η11uk−1.

Considering, for simplicity, the case of a1+η11uk−1 ≥ 0 and utilising a direct relationship between
the continuous-time and discrete-time plane, the corresponding time-constant of a continuous-
time counterpart is given by −Ts/ ln (a1 + η11uk−1), where Ts denotes the sampling time. It can
be deduced that with the expression a1+η11uk−1, hence the input, increasing in magnitude, the
corresponding time-constant increases, i.e. the system dynamics becomes faster, and vice-versa.

Figure 3(a) shows this phenomenon for the introduced exemplary first order diagonal BS.
Considering top right panel it is observed that, first, because η11 < 0 the BS exhibits a
saturation steady-state nonlinearity and, second, that the dynamics become faster with an
increasing magnitude of the input. This is verified by the upper right and the lower left panels,
where the changing location of a discrete pole over time is plotted. It is seen that the pole
moves towards the origin with the increasing magnitude of the input. The lower right panel
shows the corresponding location of the time-constant of the continuous-time counterpart. It
is observed that the equivalent time-constant decreases, proportionally to an inverse of the
logarithm, confirming that the system becomes progressively faster. Moreover, it can be verified
that if a1 + η11uk−1 < 0 the analysed BS will exhibit dynamics with damped oscillations.

Since the dynamics is affected by the input, the stability of BS structure is input dependent.
This property is clearly observed in the case of the introduced exemplary first order diagonal
BS model, where it is required that the time-varying pole stays within the unit circle, i.e.
|a1 + η11uk−1| < 1. This condition implies that the magnitude of the input must be restrained

to
(
1−a1
η11

, −1−a1
η11

)

. Also note that |a1| < 1 for stability of the autoregressive linear part. With

reference to [19] and [20], the corresponding sufficient conditions for a general BS structure to
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Figure 3. Illustrative plots showing dependence of system dynamics on input.

remain bounded are given by

|pi| < 1, Mu <
Πna

i=1(1− |pi|)
∑na

i=1

∑nb

j=1 |ηij |
, (13)

where Mu denotes a finite magnitude of the input and pi correspond to the na poles of a linear
part of the BS structure, i.e. roots of the polynomial 1−

∑na

j=1 q
−jaj.

4.3. Dynamics of Hammerstein-bilinear structure

Dynamic properties of the HBS are defined by the two component substructures. Note that this
observation is in stark contrast to a HS structure, where the static nonlinearity has no impact
on the overall qualitative system behaviour. In the case of the HBS structure such dependency
is present because the dynamic part is input dependent, hence, is implicitly influenced by the
nonlinear function that transforms it. Consequently and differently to the BS case, denominator
coefficients of the HBS structure, cf. (7), do not directly depend on the instantaneous values
of the input uk but on the instantaneous values of the intermediate input vk. This property
increases the potential range of feasible dynamic behaviour that can be obtained, in particular, a
range of possible dependency of system poles on the input is wider than that of the BS structure.

This observation is illustrated in Figure 3(b), where it is shown that the dependency of
the discrete pole location on the input magnitude may well be of a non-monotonic nature
- a phenomenon infeasible for BS models. The HBS structure comprises the arbitrarily
parametrised exemplary first order diagonal BS defined previously followed by an arbitrary
third order polynomial, i.e. f(x) =

∑3
i=1 αix

i. It is observed that the dynamics of the system,
becomes slower initially only to get faster once the input magnitude exceeds approximately 1.1.
Consequently, the relationship between the time-constant of the corresponding continuous-time
counterpart and the input magnitude is also distinctively dissimilar, which is observed in the
lower right panel. Such a non-monotonic behaviour of the apparent time-constant was reported
in [4] when modelling a distillation column with input and output being percentage change in a
reflux flow and in the top composition, respectively.

The discussed reference dependent dynamics of the HBS structure, cf. equation (4), can
be demonstrated explicitly by linearisation around a working point, denoted (u∗k, y

∗

k), and by
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examining subsequently the poles of the resulting linearised counterpart, i.e.

∆yk =

na∑

j=1

∂yk
∂yk−j

∣
∣
∣
(u∗

k
,y∗

k
)
∆yk−j +

nb∑

i=1

∂yk
∂uk−i

∣
∣
∣
(u∗

k
,y∗

k
)
∆uk−i, (14)

where the deviation variables are denoted with ∆, e.g. ∆yk = yk − y∗k. The partial derivatives
in (14) are given by

∂yk
∂yk−j

= aj +

nb∑

i=1

f(uk−i)ηij ,
∂yk
∂uk−i

=
∂f(uk−i)

∂uk−i



bi +

na∑

j=1

yk−jηij



 . (15)

The transfer function of the deviations from the working point is expressed as

∆yk
∆uk

=

∑nb

i=1 q
−i

[

∂f(uk−i)
∂uk−i

∣
∣
∣
(u∗

k
)

(

bi +
∑na

j=1 y
∗

k−jηij

)]

1−∑na

j=1 q
−j

[
aj +

∑nb

i=1 f(u
∗

k−i)ηij
] . (16)

Considering (16), it is seen that the local dynamics of the HBS is governed by the roots of the
denominator, whose coefficients are functions of both the working point and f(·). Note that a
similar observation is valid with respect to the numerator coefficients, too. This shows, therefore,
that, first, the dynamics of the HBS structure is reference dependent and, second, that it also
depends on the selection of f(·).

Conditions for stability of the HBS structure can be inferred from the analogy to the BS, see
(13), where the crucial difference is that Mu is substituted with Mv, denoting a finite magnitude
of the intermediate input signal vk. Only when f(·) is strictly monotonic, by using the relation
uk = f−1(vk), this condition can be expressed explicitly in terms of the magnitude Mu of the
actual input that excites the HBS structure.

Table 1. Overview of properties (
√

- presence, × - absence) of selected model structures.

Structure / Property IDS IM OM IDD

linear × × × ×
Hammerstein ×

√
× ×

Wiener ×
√

×
√

bilinear
√

× ×
√

Hammerstein-bilinear
√ √

×
√

Lure
√

×
√ √

5. Discussion of properties of Hammerstein-bilinear structure with relation to

other nonlinear models

Crucial properties of all discussed structures are juxtaposed in Table 1 that is partially based on
that given in the survey paper [14]. Linear model structures are also included for completeness.
The following abbreviations are used: IDS - input dependent stability, IM - input multiplicity,
OM - output multiplicity, IDD - input dependent dynamics. Generally, HS structure can be
treated as a first step towards an increase of modelling flexibility of ordinary linear structures.
It allows a nonlinear steady-state gain with IM to be obtained but the transient behaviour
remains unchanged over the entire operating range. The next step could be to consider the WS
structure which additionally offers the IDD. However, it is worth emphasising, citing [8], that
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‘this behaviour is near the limit of the Wiener model’s qualitative capability’ and achievable at
a cost of complex static elements that are undesirable in practice. In contrast, BS are inherently
flexible enough to exhibit strong IDD, which comes at a price of IDS, thus a need of restricting
magnitude of the input, cf. (13). Also, contrary to both HS and WS, BS structures lack
possibility of IM and can exhibit only a single family of steady-states curves, i.e. hyperbolic, as
shown in Figure 2. It must be added that although structurally WS possess capability of IM, to
facilitate identification and control, it is, in fact, usually assumed that the static nonlinearity is
invertible. This means that the potential for IM is inevitably lost, see [21], [22], [2], [15] for such
cases. Moreover, WS models seem to be less popular than for instance HS structures, which is
likely due to increased difficulty in their identification [1]. HBS structures add to the repertoire
of BS the potential of IDS and widen variety of feasible steady-states and dynamics, at the
same time retaining capability of a strong IDD. In applications where the process exhibits OM
other nonlinear structures, such as Lure models, are required. Note that Lure models, similarly
as HBS, are capable of exhibiting IDS and IDD, but in contrast to HBS are unable of IM. In
[14] nonlinear structures with static nonlinearities in the forward path, such as HS and WS, are
classified as being ‘mildly’ nonlinear, whilst BS, due to IDS, are placed in the ‘intermediately’
nonlinear class. Lure models, because of OM, are categorised as ‘strongly’ nonlinear. Following
this reasoning, the HBS structures, although remain in an ‘intermediately’ nonlinear class, can
be considered as a one step further towards a strongly nonlinear class of models.

6. Industrial case study

In this section the HBS structure is used for modelling an air handling unit, which is a part
of an industrial heating, ventilation and air-conditioning system used to maintain specific tight
and stable environmental conditions during the production of blood glucose test strips. The
main goal of modelling is subsequent control synthesis and tuning to optimise the overall energy
consumption.

The system is represented schematically in Figure 4 and consists of a standard air-to-water
heat exchanger, where an inflow air is cooled down by cold water. In nominal conditions the
inflow air, cold water mass-flow and the inflow cold water temperature are all approximately
constant. Therefore, for modelling purposes only two inputs, i.e. inflow air temperature and
valve stem position, and a single output of interest, i.e. outflow air temperature, are considered.
The main motivation for considering the HBS structure for this particular application follows
from first principles modelling conducted previously in [23] and [24]. These investigations
have uncovered that, firstly, it is advantageous to account explicitly for the nonlinear valve
characteristic and approximate it by a HS-type nonlinearity. Secondly, that the dynamics of
the air handling unit is operating point dependant and can be modelled by a BS. Thirdly, that
the bilinear product term has physically meaningful significance and stems directly from energy

Two

T ai, ma T ao

w
Twi, mw

Figure 4. Schematic representation of the air-handling unit, where: w - valve stem position
[%], T ai - inflow (on coil) air temperature [K], T ao - outflow (discharge) air temperature [K],
Twi - inflow cold water temperature [K], Two - outflow cold water temperature [K], mw - cold
water mass-flow rate [kg/s], ma - inflow air mass-flow [kg/s].
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Figure 5. (a) - identification and (b) - validation results in terms of the IAE criterion plotted
in function of delays corresponding to the two inputs.

balance equations. Consequently, the following HBS model structure is proposed to model the
air-handling unit

T ao
k = a1T

ao
k−1 + b1vk−1−d1 + η11T

ao
k−1vk−1−d1 + b∗1T

ai
k−1−d2

, vk =

5∑

l=1

αiw
l
k, (17)

where d1 and d2 denote unknown transport delays. Although properties of single-input single-
output HBS structures were discussed in this paper exclusively, their extension to two-input
single-output case defined by (17) should be straightforward, especially because only wk is
transformed through the static polynomial nonlinearity of 5th order.

Since both equations in (17) are separately linear in their parameters, this property is
exploited by making use of a so-called bilinear parametrisation method, see [25]. This approach
has been applied for the purpose of HS identification in [26] and identification of errors-in-
variables problems in [27], where it has been shown to possess numerically appealing properties.
Its consistency and convergence properties when applied to HS have been examined in [28].

Two sets of data sampled at 5s, referred to as the identification and validation data set,
are used giving 7, 800 and 9, 000 data points, respectively. Valve position is scaled to 10 to
ease plotting, also all data is normalised by subtracting bases that are assumed to be the
corresponding first values of signals. The identification algorithm is stopped when a maximal
number of iterations, selected as 100, is reached or when ‖θ̂i − θ̂i−1‖2 < 10−6, where θ̂i is
the estimate of the parameter vector at i-th iteration. To quantify the identification results
two performance criteria are used, i.e. the normalised integral absolute error (IAE) and the

coefficient of determination (R2
T), defined, respectively, as follows IAE = 1

N

∑N
k=1

∣
∣yk − ŷk

∣
∣ and

R2
T = 100

(

1−
∥
∥y − ŷ

∥
∥2

2
/
∥
∥y − ȳ

∥
∥2

2

)

, where ŷk is the identified model output, y and ŷ are vectors

built from the actual output and the model output, respectively, and ȳ denotes the mean value of
y. The notation ‖ · ‖2 stands for the square norm of a vector and N is number of data samples.

Because not only the parameters but also the transport delays are unknown, the identification
has to be repeated for all combinations of d1 and d2 in a predefined range. Results obtained in
terms of the IAE criterion with both delays restricted to [0, 20] samples are shown in Figure 5(a),
whilst the corresponding validation results are presented in Figure 5(b). The smallest value of
IAE=0.316, marked in Figure 5(a) by a star, is obtained at (d1, d2) = (10, 10). For completeness,
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Figure 6. Results showing performance of the identified HBS model.

the value corresponding to (10, 10) is also marked in Figure 5(b), where the actual minimum
at (11, 5) is denoted by a cross. Considering the coordinates of the minima in both figures it is
noted that whilst the first coordinate is similar, the second differs quite significantly. However,
by analysing shape of surfaces, it is observed that in both cases they resemble three dimensional
parabolas with a gradient visibly greater in the direction of d1 than d2. This means that the
selection of d1 is considerably more important than d2. Consequently, the apparent discrepancy
in the second coordinate between the two data sets is of minor significance. This observation is
supported also by a relatively small difference of the validation IAE values corresponding to the
points (10, 10) and (11, 6) which are 0.431 and 0.428, respectively. Therefore, it is d1 = d2 = 10
that is selected. Visual results in terms of the simulated output together with the input signals
used are given in Figure 6(a) and 6(b) for the identification and validation data set, respectively.
It can be observed that in both cases the model output matches the actual system output very
well. The corresponding values of the R2

T criteria are 99.2% and 98.6%, for the identification and
validation data set, respectively, indicating that on average only approximately 1% of output
variation remains unexplained by the identified model. The estimated parameters of the model
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(17) together with corresponding standard deviations are: â1 = 9.846 · 10−1 ± 8.215 · 10−5,

b̂1 = −4.977 ·10−3±2.536 ·10−5, b̂∗1 = −1.697 ·10−4±1.715 ·10−6, η̂11 = 8.813 ·10−3±8.304 ·10−5,
α̂1 = 6.233 ·10−1 ±2.629 ·10−2 , α̂2 = 9.918 ·10−2±2.296 ·10−3 , α̂3 = −3.752 ·10−3±6.810 ·10−5 ,
α̂4 = 4.886 ·10−5±8.208 ·10−7, α̂5 = −2.104 ·10−7±3.449 ·10−9. It is observed that the standard
deviations are all at least of an order smaller than the values of the corresponding estimated
parameters. These results indicate high confidence in the estimates and hence, in turn, also in
the identified HBS model.

7. Summary

A class of Hammerstein-bilinear systems (HBS) has been introduced and its properties of main
practical interest for modelling have been analysed and discussed in detail. An industrial case
study has demonstrated application of HBS structures to an exemplary real-world problem.

Acknowledgments

Authors would like to thank Mr Dean Hill from Abbott Diabetes Care UK for providing data
used in Section 6.

References
[1] Pearson R K 1995 J. of Process Control 5 197–211
[2] Pearson R K and Pottmann M 2000 J. of Process Control 10 301–315
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