18 research outputs found

    Critical role for iron accumulation in the pathogenesis of fibrotic lung disease

    Get PDF
    Increased iron levels and dysregulated iron homeostasis, or both, occur in several lung diseases. Here, the effects of iron accumulation on the pathogenesis of pulmonary fibrosis and associated lung function decline was investigated using a combination of murine models of iron overload and bleomycin-induced pulmonary fibrosis, primary human lung fibroblasts treated with iron, and histological samples from patients with or without idiopathic pulmonary fibrosis (IPF). Iron levels are significantly increased in iron overloaded transferrin receptor 2 (Tfr2) mutant mice and homeostatic iron regulator (Hfe) gene–deficient mice and this is associated with increases in airway fibrosis and reduced lung function. Furthermore, fibrosis and lung function decline are associated with pulmonary iron accumulation in bleomycin-induced pulmonary fibrosis. In addition, we show that iron accumulation is increased in lung sections from patients with IPF and that human lung fibroblasts show greater proliferation and cytokine and extracellular matrix responses when exposed to increased iron levels. Significantly, we show that intranasal treatment with the iron chelator, deferoxamine (DFO), from the time when pulmonary iron levels accumulate, prevents airway fibrosis and decline in lung function in experimental pulmonary fibrosis. Pulmonary fibrosis is associated with an increase in Tfr1+ macrophages that display altered phenotype in disease, and DFO treatment modified the abundance of these cells. These experimental and clinical data demonstrate that increased accumulation of pulmonary iron plays a key role in the pathogenesis of pulmonary fibrosis and lung function decline. Furthermore, these data highlight the potential for the therapeutic targeting of increased pulmonary iron in the treatment of fibrotic lung diseases such as IPF

    Global, regional, and national burden of colorectal cancer and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Funding: F Carvalho and E Fernandes acknowledge support from Fundação para a Ciência e a Tecnologia, I.P. (FCT), in the scope of the project UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences UCIBIO and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy i4HB; FCT/MCTES through the project UIDB/50006/2020. J Conde acknowledges the European Research Council Starting Grant (ERC-StG-2019-848325). V M Costa acknowledges the grant SFRH/BHD/110001/2015, received by Portuguese national funds through Fundação para a Ciência e Tecnologia (FCT), IP, under the Norma Transitória DL57/2016/CP1334/CT0006.proofepub_ahead_of_prin

    The global burden of adolescent and young adult cancer in 2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15-39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15-39 years to define adolescents and young adults. Findings There were 1.19 million (95% UI 1.11-1.28) incident cancer cases and 396 000 (370 000-425 000) deaths due to cancer among people aged 15-39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59.6 [54.5-65.7] per 100 000 person-years) and high-middle SDI countries (53.2 [48.8-57.9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14.2 [12.9-15.6] per 100 000 person-years) and middle SDI (13.6 [12.6-14.8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23.5 million (21.9-25.2) DALYs to the global burden of disease, of which 2.7% (1.9-3.6) came from YLDs and 97.3% (96.4-98.1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Structural and Functional Insights into Foamy Viral Integrase

    Get PDF
    Successful integration of retroviral DNA into the host chromosome is an essential step for viral replication. The process is mediated by virally encoded integrase (IN) and orchestrated by 3'-end processing and the strand transfer reaction. In vitro reaction conditions, such as substrate specificity, cofactor usage, and cellular binding partners for such reactions by the three distinct domains of prototype foamy viral integrase (PFV-IN) have been described well in several reports. Recent studies on the three‑dimensional structure of the interacting complexes between PFV-IN and DNA, cofactors, binding partners, or inhibitors have explored the mechanistic details of such interactions and shown its utilization as an important target to develop anti-retroviral drugs. The presence of a potent, non-transferable nuclear localization signal in the PFV C-terminal domain extends its use as a model for investigating cellular trafficking of large molecular complexes through the nuclear pore complex and also to identify novel cellular targets for such trafficking. This review focuses on recent advancements in the structural analysis and in vitro functional aspects of PFV-IN

    Novel Advances in Modifying BMPR2 Signaling in PAH

    No full text
    Pulmonary Arterial Hypertension (PAH) is a disease of the pulmonary arteries, that is characterized by progressive narrowing of the pulmonary arterial lumen and increased pulmonary vascular resistance, ultimately leading to right ventricular dysfunction, heart failure and premature death. Current treatments mainly target pulmonary vasodilation and leave the progressive vascular remodeling unchecked resulting in persistent high morbidity and mortality in PAH even with treatment. Therefore, novel therapeutic strategies are urgently needed. Loss of function mutations of the Bone Morphogenetic Protein Receptor 2 (BMPR2) are the most common genetic factor in hereditary forms of PAH, suggesting that the BMPR2 pathway is fundamentally important in the pathogenesis. Dysfunctional BMPR2 signaling recapitulates the cellular abnormalities in PAH as well as the pathobiology in experimental pulmonary hypertension (PH). Approaches to restore BMPR2 signaling by increasing the expression of BMPR2 or its downstream signaling targets are currently actively explored as novel ways to prevent and improve experimental PH as well as PAH in patients. Here, we summarize existing as well as novel potential treatment strategies for PAH that activate the BMPR2 receptor pharmaceutically or genetically, increase the receptor availability at the cell surface, or reconstitute downstream BMPR2 signaling

    The emerging diagnostic and therapeutic roles of small nucleolar RNAs in lung diseases

    No full text
    Small nucleolar RNAs (snoRNAs) are non-coding RNA molecules that range from 60 to 300 nucleotides in length and are primarily located in the nucleoli of cells. They play a critical role in modifying ribosomal RNA and can also regulate alternative splicing and posttranscriptional modification of mRNA. Alterations in snoRNA expression can affect numerous cellular processes, including cell proliferation, apoptosis, angiogenesis, fibrosis, and inflammation, making them a promising target for diagnostics and treatment of various human pathologies. Recent evidence suggests that abnormal snoRNA expression is strongly associated with the development and progression of several lung diseases, such as lung cancer, asthma, chronic obstructive pulmonary disease, and pulmonary hypertension, as well as COVID-19. While few studies have shown a causal relationship between snoRNA expression and disease onset, this research field presents exciting opportunities for identifying new biomarkers and therapeutic targets in lung disease. This review discusses the emerging role and molecular mechanisms of snoRNAs in the pathogenesis of lung diseases, focusing on research opportunities, clinical studies, biomarkers, and therapeutic potential

    A New Transformer-Less Common Grounded Nine-Level Grid-Connected Boost Inverter

    No full text
    In this paper, a new single-source switched-capacitor-based 9-level structure that is applied to grid systems is presented. In this presented circuit, the null of the grid and input source has the common ground point. As a result, the leakage current is suppressed completely. The introduced solution can provide a nine-level output voltage waveform and boost the input voltage amplitude using a single input source. The high step-up factor of the introduced inverter is 2. In this topology, the switched capacitors are fixed to input the dc power supply and provide the voltage boosting feature. The mathematical analysis of the output filter is expressed. A peack current control method is applied to generate the gate pulses and control both active and reactive powers. A thorough comparison has been made to highlight the proposed structure\u27s features and show the difference between the proposed structure and other structures. Finally, to confirm the correct operation of the proposed structure, its electrical circuit was simulated using MATLAB/Simulink software, and the results were extracted considering different operational conditions

    Arteriovenous Malformations—Current Understanding of the Pathogenesis with Implications for Treatment

    No full text
    Arteriovenous malformations are a vascular anomaly typically present at birth, characterized by an abnormal connection between an artery and a vein (bypassing the capillaries). These high flow lesions can vary in size and location. Therapeutic approaches are limited, and AVMs can cause significant morbidity and mortality. Here, we describe our current understanding of the pathogenesis of arteriovenous malformations based on preclinical and clinical findings. We discuss past and present accomplishments and challenges in the field and identify research gaps that need to be filled for the successful development of therapeutic strategies in the future

    PTPN1 Deficiency Modulates BMPR2 Signaling and Induces Endothelial Dysfunction in Pulmonary Arterial Hypertension

    No full text
    Bone morphogenic protein receptor 2 (BMPR2) expression and signaling are impaired in pulmonary arterial hypertension (PAH). How BMPR2 signaling is decreased in PAH is poorly understood. Protein tyrosine phosphatases (PTPs) play important roles in vascular remodeling in PAH. To identify whether PTPs modify BMPR2 signaling, we used a siRNA-mediated high-throughput screening of 22,124 murine genes in mouse myoblastoma reporter cells using ID1 expression as readout for BMPR2 signaling. We further experimentally validated the top hit, PTPN1 (PTP1B), in healthy human pulmonary arterial endothelial cells (PAECs) either silenced by siRNA or exposed to hypoxia and confirmed its relevance to PAH by measuring PTPN1 levels in blood and PAECs collected from PAH patients. We identified PTPN1 as a novel regulator of BMPR2 signaling in PAECs, which is downregulated in the blood of PAH patients, and documented that downregulation of PTPN1 is linked to endothelial dysfunction in PAECs. These findings point to a potential involvement for PTPN1 in PAH and will aid in our understanding of the molecular mechanisms involved in the disease
    corecore