538 research outputs found

    Application of satellite data to tropic/subtropic moisture coupling

    Get PDF
    The objective is to utilize various satellite products from a number of satellites together with data observed from platforms available during the FGGE Special Observing Periods to diagnose synoptic scale events in date void regions. The focus is on episodes of northeastward traveling cloud bands which move out of the ITCZ over the eastern North Pacific Ocean. These events are called moisture bursts

    WetNet: Using SSM/I data interactively for global distribution of tropical rainfall and precipitable water

    Get PDF
    The research objectives were the following: (1) to use SSM/I to categorize, measure, and parameterize effects of rainfall systems around the globe, especially mesoscale convective systems; (2) to use SSM/I to monitor key components of the global hydrologic cycle, including tropical rainfall and precipitable water, and links to increasing sea surface temperatures; and (3) to assist in the development of efficient methods of exchange of massive satellite data bases and of analysis techniques, especially their use at a university. Numerous tasks have been initiated. First and foremost has been the integration and startup of the WetNet computer system into the TAMU computer network. Scientific activity was infeasible before completion of this activity. Final hardware delivery was not completed until October 1991, after which followed a period of identification and solution of several hardware and software and software problems. Accomplishments representing approximately four months work with the WetNEt system are presented

    WetNet: Using SSM/I data interactively for global distribution of rainfall and precipitable water

    Get PDF
    By completing hardware installation, preparing for comparative studies of SSM/I, radar, and lightning data, it is believed that this will be a powerful combination for evaluating the global distribution of tropical rainfall, and the vertical distribution of latent heating, with strong application to algorithms for use on TRMM, EOS-A, and future GOES spacecraft. Potential data bases will be surveyed, about 5 case studies with surface rainfall, radar, lightning, and sounding data will be identified. SSM/I algorithms will be used to identify convective regions of MCSs. A catalog will be developed of the global profile of heavy tropical rainfall, and how these zones are organized within larger tropical weather systems. Beginning with the first few months of SSM/I data distributed over WetNet, SSM/I radiances will be compared with TOVS radiance (moisture and thermal) and OLR observations. The purpose is to improve understanding of how real world water vapor profiles in the tropical atmosphere are perceived by SSM/I precipitable water algorithm and, at the same time, by the TOVS water vapor channel

    Optical excitation of nonlinear spin waves

    Full text link
    We demonstrate a technique for exciting spin waves in an ultracold gas of Rb-87 atoms based on tunable AC Stark potentials. This technique allows us to excite normal modes of spin waves with arbitrary amplitudes in the trapped gas, including dipole, quadrupole, octupole, and hexadecapole modes. These modes exhibit strong nonlinearities, which manifest as amplitude dependence of the excitation frequencies and departure from sinusoidal behavior. Our results are in good agreement with a full treatment of a quantum Boltzmann transport equation.Comment: 11 pages, 5 figure

    Duality Between Spatial and Angular Shift in Optical Reflection

    Get PDF
    We report a unified representation of the spatial and angular Goos-Hanchen and Imbert-Fedorov shifts that occur when a light beam reflects from a plane interface. We thus reveal the dual nature of spatial and angular shifts in optical beam reflection. In the Goos-Hanchen case we show theoretically and experimentally that this unification naturally arises in the context of reflection from a lossy surface (e.g., a metal).Comment: 4 pages, 3 figure

    Properties of the Central American cold surge

    Get PDF
    The Central American cold surge (CACS) is a frontal incursion from the United States into Central America and resembles the East Asian cold surge. They occur more frequently than analyzed by NMC or by published results, based on our observations between 1979 and 1990. Climatology and structure are quantified, based on surface and upper air stations throughout Central America and satellite products from GOES visible and infrared sensors and SSM/I precipitable water and rain rate sensors

    Wharton’s jelly-derived mesenchymal stromal cells as a promising cellular therapeutic strategy for the management of graft-versus-host disease

    Get PDF
    Citation: McGuirk, J. P., Robert Smith, J., Divine, C. L., Zuniga, M., & Weiss, M. L. (2015). Wharton’s jelly-derived mesenchymal stromal cells as a promising cellular therapeutic strategy for the management of graft-versus-host disease. Pharmaceuticals, 8(2), 196-220. doi:10.3390/ph8020196Allogeneic hematopoietic cell transplantation (allo-HCT), a treatment option in hematologic malignancies and bone marrow failure syndromes, is frequently complicated by Graft-versus-host disease (GVHD). The primary treatment for GVHD involves immune suppression by glucocorticoids. However, patients are often refractory to the steroid therapy, and this results in a poor prognosis. Therefore alternative therapies are needed to treat GVHD. Here, we review data supporting the clinical investigation of a novel cellular therapy using Wharton’s jelly (WJ)-derived mesenchymal stromal cells (MSCs) as a potentially safe and effective therapeutic strategy in the management of GVHD. Adult-derived sources of MSCs have demonstrated signals of efficacy in the management of GVHD. However, there are limitations, including: limited proliferation capacity; heterogeneity of cell sources; lengthy expansion time to clinical dose; expansion failure in vitro; and a painful, invasive, isolation procedure for the donor. Therefore, alternative MSC sources for cellular therapy are sought. The reviewed data suggests MSCs derived from WJ may be a safe and effective cellular therapy for GVHD. Laboratories investigated and defined the immune properties of WJ-MSCs for potential use in cellular therapy. These cells represent a more uniform cell population than bone marrow-derived MSCs, displaying robust immunosuppressive properties and lacking significant immunogenicity. They can be collected safely and painlessly from individuals at birth, rapidly expanded and stored cryogenically for later clinical use. Additionally, data we reviewed suggested licensing MSCs (activating MSCs by exposure to cytokines) to enhance effectiveness in treating GVHD. Therefore, WJCs should be tested as a second generation, relatively homogeneous allogeneic cell therapy for the treatment of GVHD. © 2015 by the authors; licensee MDPI, Basel, Switzerland

    Normal-superfluid interaction dynamics in a spinor Bose gas

    Get PDF
    Coherent behavior of spinor Bose-Einstein condensates is studied in the presence of a significant uncondensed (normal) component. Normal-superfluid exchange scattering leads to a near-perfect local alignment between the spin fields of the two components. Through this spin locking, spin-domain formation in the condensate is vastly accelerated as the spin populations in the condensate are entrained by large-amplitude spin waves in the normal component. We present data evincing the normal-superfluid spin dynamics in this regime of complicated interdependent behavior.Comment: 5 pages, 4 fig

    Influence of optical aberrations in an atomic gyroscope

    Full text link
    In atom interferometry based on light-induced diffraction, the optical aberrations of the laser beam splitters are a dominant source of noise and systematic effect. In an atomic gyroscope, this effect is dramatically reduced by the use of two atomic sources. But it remains critical while coupled to fluctuations of atomic trajectories, and appears as a main source of noise to the long term stability. Therefore we measure these contributions in our setup, using cold Cesium atoms and stimulated Raman transitions

    Anisotropic Spin Diffusion in Trapped Boltzmann Gases

    Get PDF
    Recent experiments in a mixture of two hyperfine states of trapped Bose gases show behavior analogous to a spin-1/2 system, including transverse spin waves and other familiar Leggett-Rice-type effects. We have derived the kinetic equations applicable to these systems, including the spin dependence of interparticle interactions in the collision integral, and have solved for spin-wave frequencies and longitudinal and transverse diffusion constants in the Boltzmann limit. We find that, while the transverse and longitudinal collision times for trapped Fermi gases are identical, the Bose gas shows diffusion anisotropy. Moreover, the lack of spin isotropy in the interactions leads to the non-conservation of transverse spin, which in turn has novel effects on the hydrodynamic modes.Comment: 10 pages, 4 figures; submitted to PR
    • …
    corecore