We demonstrate a technique for exciting spin waves in an ultracold gas of
Rb-87 atoms based on tunable AC Stark potentials. This technique allows us to
excite normal modes of spin waves with arbitrary amplitudes in the trapped gas,
including dipole, quadrupole, octupole, and hexadecapole modes. These modes
exhibit strong nonlinearities, which manifest as amplitude dependence of the
excitation frequencies and departure from sinusoidal behavior. Our results are
in good agreement with a full treatment of a quantum Boltzmann transport
equation.Comment: 11 pages, 5 figure