13 research outputs found

    Human epidermal growth factor receptor 2 testing in breast cancer : American society of clinical oncology/ college of American pathologists clinical practice guideline focused update

    No full text
    Purpose To update key recommendations of the American Society of Clinical Oncology/College of American Pathologists human epidermal growth factor receptor 2 (HER2) testing in breast cancer guideline. Methods Based on the signals approach, an Expert Panel reviewed published literature and research survey results on the observed frequency of less common in situ hybridization (ISH) patterns to update the recommendations. Recommendations Two recommendations addressed via correspondence in 2015 are included. First, immunohistochemistry (IHC) 2+ is defined as invasive breast cancer with weak to moderate complete membrane staining observed in > 10% of tumor cells. Second, if the initial HER2 test result in a core needle biopsy specimen of a primary breast cancer is negative, a new HER2 test may (not "must") be ordered on the excision specimen based on specific clinical criteria. The HER2 testing algorithm for breast cancer is updated to address the recommended work-up for less common clinical scenarios (approximately 5% of cases) observed when using a dual-probe ISH assay. These scenarios are described as ISH group 2 ( HER2/chromosome enumeration probe 17 [CEP17] ratio 65 2.0; average HER2 copy number < 4.0 signals per cell), ISH group 3 ( HER2/CEP17 ratio < 2.0; average HER2 copy number 65 6.0 signals per cell), and ISH group 4 ( HER2/CEP17 ratio < 2.0; average HER2 copy number 65 4.0 and < 6.0 signals per cell). The diagnostic approach includes more rigorous interpretation criteria for ISH and requires concomitant IHC review for dual-probe ISH groups 2 to 4 to arrive at the most accurate HER2 status designation (positive or negative) based on combined interpretation of the ISH and IHC assays. The Expert Panel recommends that laboratories using single-probe ISH assays include concomitant IHC review as part of the interpretation of all single-probe ISH assay results. Find additional information at www.asco.org/breast-cancer-guidelines

    Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: american society of clinical oncology/college of american pathologists clinical practice guideline update

    No full text
    PURPOSE: To update the American Society of Clinical Oncology (ASCO)/College of American Pathologists (CAP) guideline recommendations for human epidermal growth factor receptor 2 (HER2) testing in breast cancer to improve the accuracy of HER2 testing and its utility as a predictive marker in invasive breast cancer. METHODS: ASCO/CAP convened an Update Committee that included coauthors of the 2007 guideline to conduct a systematic literature review and update recommendations for optimal HER2 testing. RESULTS: The Update Committee identified criteria and areas requiring clarification to improve the accuracy of HER2 testing by immunohistochemistry (IHC) or in situ hybridization (ISH). The guideline was reviewed and approved by both organizations. RECOMMENDATIONS: The Update Committee recommends that HER2 status (HER2 negative or positive) be determined in all patients with invasive (early stage or recurrence) breast cancer on the basis of one or more HER2 test results (negative, equivocal, or positive). Testing criteria define HER2-positive status when (on observing within an area of tumor that amounts to > 10% of contiguous and homogeneous tumor cells) there is evidence of protein overexpression (IHC) or gene amplification (HER2 copy number or HER2/CEP17 ratio by ISH based on counting at least 20 cells within the area). If results are equivocal (revised criteria), reflex testing should be performed using an alternative assay (IHC or ISH). Repeat testing should be considered if results seem discordant with other histopathologic findings. Laboratories should demonstrate high concordance with a validated HER2 test on a sufficiently large and representative set of specimens. Testing must be performed in a laboratory accredited by CAP or another accrediting entity. The Update Committee urges providers and health systems to cooperate to ensure the highest quality testing. This guideline was developed through a collaboration between the American Society of Clinical Oncology and the College of American Pathologists and has been published jointly by invitation and consent in both Journal of Clinical Oncology and the Archives of Pathology & Laboratory Medicine

    American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version).

    No full text
    Item does not contain fulltextPURPOSE: To develop a guideline to improve the accuracy of immunohistochemical (IHC) estrogen receptor (ER) and progesterone receptor (PgR) testing in breast cancer and the utility of these receptors as predictive markers. METHODS: The American Society of Clinical Oncology and the College of American Pathologists convened an international Expert Panel that conducted a systematic review and evaluation of the literature in partnership with Cancer Care Ontario and developed recommendations for optimal IHC ER/PgR testing performance. RESULTS: Up to 20% of current IHC determinations of ER and PgR testing worldwide may be inaccurate (false negative or false positive). Most of the issues with testing have occurred because of variation in pre-analytic variables, thresholds for positivity, and interpretation criteria. RECOMMENDATIONS: The Panel recommends that ER and PgR status be determined on all invasive breast cancers and breast cancer recurrences. A testing algorithm that relies on accurate, reproducible assay performance is proposed. Elements to reliably reduce assay variation are specified. It is recommended that ER and PgR assays be considered positive if there are at least 1% positive tumor nuclei in the sample on testing in the presence of expected reactivity of internal (normal epithelial elements) and external controls. The absence of benefit from endocrine therapy for women with ER-negative invasive breast cancers has been confirmed in large overviews of randomized clinical trials.1 juli 201

    Extinction vulnerability in marine populations

    No full text
    Human impacts on the world's oceans have been substantial, leading to concerns about the extinction of marine taxa. We have compiled 133 local, regional and global extinctions of marine populations. There is typically a 53-year lag between the last sighting of an organism and the reported date of the extinction at whatever scale this has occurred. Most disappearances (80%) were detected using indirect historical comparative methods, which suggests that marine extinctions may have been underestimated because of low-detection power. Exploitation caused most marine losses at various scales (55%), followed closely by habitat loss (37%), while the remainder were linked to invasive species, climate change, pollution and disease. Several perceptions concerning the vulnerability of marine organisms appear to be too general and insufficiently conservative. Marine species cannot be considered less vulnerable on the basis of biological attributes such as high fecundity or large-scale dispersal characteristics. For commercially exploited species, it is often argued that economic extinction of exploited populations will occur before biological extinction, but this is not the case for non-target species caught in multispecies fisheries or species with high commercial value, especially if this value increases as species become rare. The perceived high potential for recovery, high variability and low extinction vulnerability of fish populations have been invoked to avoid listing commercial species of fishes under international threat criteria. However, we need to learn more about recovery, which may be hampered by negative population growth at small population sizes (Allee effect or depensation) or ecosystem shifts, as well as about spatial dynamics and connectivity of subpopulations before we can truly understand the nature of responses to severe depletions. The evidence suggests that fish populations do not fluctuate more than those of mammals, birds and butterflies, and that fishes may exhibit vulnerability similar to mammals, birds and butterflies. There is an urgent need for improved methods of detecting marine extinctions at various spatial scales, and for predicting the vulnerability of species
    corecore