909 research outputs found

    Independent Orbiter Assessment (IOA): Analysis of the orbiter main propulsion system

    Get PDF
    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbiter Main Propulsion System (MPS) hardware are documented. The Orbiter MPS consists of two subsystems: the Propellant Management Subsystem (PMS) and the Helium Subsystem. The PMS is a system of manifolds, distribution lines and valves by which the liquid propellants pass from the External Tank (ET) to the Space Shuttle Main Engines (SSMEs) and gaseous propellants pass from the SSMEs to the ET. The Helium Subsystem consists of a series of helium supply tanks and their associated regulators, check valves, distribution lines, and control valves. The Helium Subsystem supplies helium that is used within the SSMEs for inflight purges and provides pressure for actuation of SSME valves during emergency pneumatic shutdowns. The balance of the helium is used to provide pressure to operate the pneumatically actuated valves within the PMS. Each component was evaluated and analyzed for possible failure modes and effects. Criticalities were assigned based on the worst possible effect of each failure mode. Of the 690 failure modes analyzed, 349 were determined to be PCIs

    Texas Livestock Auction Markets - Methods and Facilities.

    Get PDF
    59 pg

    Marketing Texas Goats.

    Get PDF
    16 p

    Symmetric and asymmetric action integration during cooperative object manipulation in virtual environments

    Get PDF
    Cooperation between multiple users in a virtual environment (VE) can take place at one of three levels. These are defined as where users can perceive each other (Level 1), individually change the scene (Level 2), or simultaneously act on and manipulate the same object (Level 3). Despite representing the highest level of cooperation, multi-user object manipulation has rarely been studied. This paper describes a behavioral experiment in which the piano movers' problem (maneuvering a large object through a restricted space) was used to investigate object manipulation by pairs of participants in a VE. Participants' interactions with the object were integrated together either symmetrically or asymmetrically. The former only allowed the common component of participants' actions to take place, but the latter used the mean. Symmetric action integration was superior for sections of the task when both participants had to perform similar actions, but if participants had to move in different ways (e.g., one maneuvering themselves through a narrow opening while the other traveled down a wide corridor) then asymmetric integration was superior. With both forms of integration, the extent to which participants coordinated their actions was poor and this led to a substantial cooperation overhead (the reduction in performance caused by having to cooperate with another person)

    Performance of multi-aperture grid extraction systems for an ITER-relevant RF-driven negative hydrogen ion source

    No full text
    The ITER neutral beam system requires a negative hydrogen ion beam of 48 A with an energy of 0.87 MeV, and a negative deuterium beam of 40 A with an energy of 1 MeV. The beam is extracted from a large ion source of dimension 1.9 × 0.9 m2 by an acceleration system consisting of seven grids with 1280 apertures each. Currently, apertures with a diameter of 14 mm in the first grid are foreseen. In 2007, the IPP RF source was chosen as the ITER reference source due to its reduced maintenance compared with arc-driven sources and the successful development at the BATMAN test facility of being equipped with the small IPP prototype RF source ( of the area of the ITER NBI source). These results, however, were obtained with an extraction system with 8 mm diameter apertures. This paper reports on the comparison of the source performance at BATMAN of an ITER-relevant extraction system equipped with chamfered apertures with a 14 mm diameter and 8 mm diameter aperture extraction system. The most important result is that there is almost no difference in the achieved current density—being consistent with ion trajectory calculations—and the amount of co-extracted electrons. Furthermore, some aspects of the beam optics of both extraction systems are discussed.</jats:p

    Cyclooxygenase-1 and -2 modulate sweating but not cutaneous vasodilation during exercise in the heat in young men

    Get PDF
    We recently reported that the nonselective cyclooxygenase (COX) inhibitor ketorolac attenuated sweating but not cutaneous vasodilation during moderate‐intensity exercise in the heat. However, the specific contributions of COX‐1 and COX‐2 to the sweating response remained to be determined. We tested the hypothesis that COX‐1 but not COX‐2 contributes to sweating with no role for either COX isoform in cutaneous vasodilation during moderate‐intensity exercise in the heat. In thirteen young males (22 ± 2 years), sweat rate and cutaneous vascular conductance were measured at three forearm skin sites that were continuously treated with (1) lactated Ringer\u27s solution (Control), (2) 150 μmmol·L−1 celecoxib, a selective COX‐2 inhibitor, or (3) 10 mmol L−1 ketorolac, a nonselective COX inhibitor. Participants first rested in a non heat stress condition (≥85 min, 25°C) followed by a further 70‐min rest period in the heat (35°C). They then performed 50 min of moderate‐intensity cycling (~55% peak oxygen uptake) followed by a 30‐min recovery period. At the end of exercise, sweat rate was lower at the 150 μmol·L−1 celecoxib (1.51 ± 0.25 mg·min−1·cm−2) and 10 mmol·L−1 ketorolac (1.30 ± 0.30 mg·min−1·cm−2) treated skin sites relative to the Control site (1.89 ± 0.27 mg·min−1·cm−2) (both P ≤ 0.05). Additionally, sweat rate at the ketorolac site was attenuated relative to the celecoxib site (P ≤ 0.05). Neither celecoxib nor ketorolac influenced cutaneous vascular conductance throughout the experiment (both P > 0.05). We showed that both COX‐1 and COX‐2 contribute to sweating but not cutaneous vasodilation during moderate‐intensity exercise in the heat in young men

    Regulation of Notch signaling by Drosophila heparan sulfate 3-O sulfotransferase

    Get PDF
    Heparan sulfate (HS) regulates the activity of various ligands and is involved in molecular recognition events on the cell surface and in the extracellular matrix. Specific binding of HS to different ligand proteins depends on the sulfation pattern of HS. For example, the interaction between antithrombin and a particular 3-O sulfated HS motif is thought to modulate blood coagulation. However, a recent study of mice defective for this modification suggested that 3-O sulfation plays other biological roles. Here, we show that Drosophila melanogaster HS 3-O sulfotransferase-b (Hs3st-B), which catalyzes HS 3-O sulfation, is a novel component of the Notch pathway. Reduction of Hs3st-B function by transgenic RNA interference compromised Notch signaling, producing neurogenic phenotypes. We also show that levels of Notch protein on the cell surface were markedly decreased by loss of Hs3st-B. These findings suggest that Hs3st-B is involved in Notch signaling by affecting stability or intracellular trafficking of Notch protein

    Experimental characterization of the active and passive fast-ion H-alpha emission in W7-X using FIDASIM

    Get PDF
    This paper presents the first results from the analysis of Balmer-alpha spectra at Wendelstein 7-X which contain the broad charge exchange emission from fast-ions. The measured spectra are compared to synthetic spectra predicted by the FIDASIM code, which has been supplied with the 3D magnetic fields from VMEC, 5D fast-ion distribution functions from ASCOT, and a realistic Neutral Beam Injection geometry including beam particle blocking elements. Detailed modeling of the beam emission shows excellent agreement between measured beam emission spectra and predictions. In contrast, modeling of beam halo radiation and Fast-Ion H-Alpha signals (FIDA) is more challenging due to strong passive contributions. While about 50% of the halo radiation can be attributed to passive signals from edge neutrals, the FIDA emission—in particular for an edge-localized line of sights—is dominated by passive emission. This is in part explained by high neutral densities in the plasma edge and in part by edge-born fast-ion populations as demonstrated by detailed modeling of the edge fast-ion distribution
    corecore