154 research outputs found

    Hyperpolarization-activated cyclic nucleotide-gated 2 (HCN2) ion channels drive pain in mouse models of diabetic neuropathy

    Get PDF
    Blocking HCN2 ion channel activity in peripheral nociceptive neurons alleviates the pain hypersensitivity associated with diabetic neuropathy.</jats:p

    Role of hyperpolarization-activated cyclic nucleotide-gated ion channels in neuropathic pain: a proof-of-concept study of ivabradine in patients with chronic peripheral neuropathic pain.

    Get PDF
    INTRODUCTION: Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels mediate repetitive action potential firing in the heart and nervous system. The HCN2 isoform is expressed in nociceptors, and preclinical studies suggest a critical role in neuropathic pain. Ivabradine is a nonselective HCN blocker currently available for prescription for cardiac indications. Mouse data suggest that ivabradine in high concentrations is equianalgesic with gabapentin. We sought to translate these findings to patients with chronic peripheral neuropathic pain. OBJECTIVES: We sought to translate these findings to patients with chronic peripheral neuropathic pain. METHODS: We adopted an open-label design, administering increasing doses of ivabradine to target a heart rate of 50 to 60 BPM, up to a maximum of 7.5 mg twice daily. All participants scored their pain on an 11-point numerical rating scale (NRS). RESULTS: Seven (7) participants received the drug and completed the study. There was no significant treatment effect on the primary endpoint, the difference between the mean score at baseline and at maximum dosing (mean reduction = 0.878, 95% CI = -2.07 to 0.31, P = 0.1). Exploratory analysis using linear mixed models, however, revealed a highly significant correlation between ivabradine dose and pain scores (χ2(1) = 74.6, P < 0.001), with a reduction of 0.12 ± 0.01 (SEM) NRS points per milligram. The 2 participants with painful diabetic neuropathy responded particularly well. CONCLUSION: This suggests that ivabradine may be efficacious at higher doses, particularly in patients with diabetic neuropathic pain. Importantly, participants reported no adverse effects. These data suggest that ivabradine, a peripherally restricted drug (devoid of central nervous system side effects), is well tolerated in patients with chronic neuropathic pain. Ivabradine is now off-patent, and its analgesic potential merits further investigation in clinical trials.This research was supported by the NIHR Cambridge Biomedical Research Centre (BRC-1215-20014). The authors acknowledge support from the East of England NIHR Clinical Research Network who facilitated identification of participants, and the staff at the Cambridge NIHR Clinical Investigation Ward, who cared for our participants during their visit. The authors are grateful to Mr Abhishek Dixit who built and maintained OpenClinica for data capture. The in-house development and use of FAST-diary are supported by Evelyn Trust (RECORD-Pain) and AAGBI (Anaesthesia-Wiley) research grants

    Protease activated receptors 1 and 4 sensitize TRPV1 in nociceptive neurones.

    Get PDF
    Protease-activated receptors (PAR1-4) are activated by proteases released by cell damage or blood clotting, and are known to be involved in promoting pain and hyperalgesia. Previous studies have shown that PAR2 receptors enhance activation of TRPV1 but the role of other PARs is less clear. In this paper we investigate the expression and function of the PAR1, 3 and 4 thrombin-activated receptors in sensory neurones. Immunocytochemistry and in situ hybridization show that PAR1 and PAR4 are expressed in 10 - 15% of neurons, distributed across all size classes. Thrombin or a specific PAR1 or PAR4 activating peptide (PAR1/4-AP) caused functional effects characteristic of activation of the PLCβ/PKC pathway: intracellular calcium release, sensitisation of TRPV1, and translocation of the epsilon isoform of PKC (PKCε) to the neuronal cell membrane. Sensitisation of TRPV1 was significantly reduced by PKC inhibitors. Neurons responding to thrombin or PAR1-AP were either small nociceptive neurones of the peptidergic subclass, or larger neurones which expressed markers for myelinated fibres. Sequential application of PAR1-AP and PAR4-AP showed that PAR4 is expressed in a subset of the PAR1-expressing neurons. Calcium responses to PAR2-AP were by contrast seen in a distinct population of small IB4+ nociceptive neurones. PAR3 appears to be non-functional in sensory neurones. In a skin-nerve preparation the release of the neuropeptide CGRP by heat was potentiated by PAR1-AP. Culture with nerve growth factor (NGF) increased the proportion of thrombin-responsive neurons in the IB4- population, while glial-derived neurotropic factor (GDNF) and neurturin upregulated the proportion of thrombin-responsive neurons in the IB4+ population. We conclude that PAR1 and PAR4 are functionally expressed in large myelinated fibre neurons, and are also expressed in small nociceptors of the peptidergic subclass, where they are able to potentiate TRPV1 activity.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Direct inhibition of the cold-activated TRPM8 ion channel by Gαq

    Get PDF
    Activation of the TRPM8 ion channel in sensory nerve endings produces a sensation of pleasant coolness. Here we show that inflammatory mediators such as bradykinin and histamine inhibit TRPM8 in intact sensory nerves, but do not do so through conventional signalling pathways. The G-protein subunit Gα(q) instead binds to TRPM8 and when activated by a Gq-coupled receptor directly inhibits ion channel activity. Deletion of Gα(q) largely abolished inhibition of TRPM8, and inhibition was rescued by a Gα(q) chimaera whose ability to activate downstream signalling pathways was completely ablated. Activated Gα(q) protein, but not Gβγ, potently inhibits TRPM8 in excised patches. We conclude that Gα(q) pre-forms a complex with TRPM8 and inhibits activation of TRPM8, following activation of G-protein-coupled receptors, by a direct action. This signalling mechanism may underlie the abnormal cold sensation caused by inflammation

    Affinity chromatography in dynamic combinatorial libraries: one-pot amplification and isolation of a strongly binding receptor

    Get PDF
    We report the one-pot amplification and isolation of a nanomolar receptor in a multibuilding block aqueous dynamic combinatorial library using a polymer-bound template. By appropriate choice of a poly(N,N-dimethylacrylamide)-based support, unselective ion-exchange type behaviour between the oppositely charged cationic guest and polyanionic hosts was overcome, such that the selective molecular recognition arising in aqueous solution reactions is manifest also in the analogous templated solid phase DCL syntheses. The ability of a polymer bound template to identify and isolate a synthetic receptor via dynamic combinatorial chemistry was not compromised by the large size of the library, consisting of well over 140 theoretical members, demonstrating the practical advantages of a polymer-supported DCL methodology

    Sodium bicarbonate ingestion and individual variability in time to peak pH

    Get PDF
    The aim of this study was to determine the individual variability in time to peak pH after the consumption of a 300mg.kg-1 dose of sodium bicarbonate (NaHCO3). Seventeen active males volunteered to participate in the study (mean ± SD: age 21.38 ± 1.5y; mass 75.8 ± 5.8kg; height 176.8 ± 7.6cm). Participants reported to the laboratory where a resting capillary blood sample was taken aseptically from the fingertip. After this, 300 mg.kg-1 of NaHCO3 in 400ml of water with 50ml of flavoured cordial was ingested. Participants then rested for 90 min during which repeated blood samples were procured at 10 minute intervals for 60 mins and then every 5 min until 90 min. Blood pH concentrations were measured using a blood gas analyser. Results suggested that time to peak pH (64.41±18.78 min) was highly variable with a range of 10-85 min and a coefficient of variation of 29.16%. A bi-modal distribution occurred, at 65 and 75 min. In conclusion, researchers and athletes, when using NaHCO3 as an ergogenic aid, should determine, in advance their time to peak pH to best utilise the added buffering capacity this substance allows

    Artemisinin inhibits neutrophil and macrophage chemotaxis, cytokine production and NET release

    Get PDF
    Immune cell chemotaxis to the sites of pathogen invasion is critical for fighting infection, but in life-threatening conditions such as sepsis and Covid-19, excess activation of the innate immune system is thought to cause a damaging invasion of immune cells into tissues and a consequent excessive release of cytokines, chemokines and neutrophil extracellular traps (NETs). In these circumstances, tempering excessive activation of the innate immune system may, paradoxically, promote recovery. Here we identify the antimalarial compound artemisinin as a potent and selective inhibitor of neutrophil and macrophage chemotaxis induced by a range of chemotactic agents. Artemisinin released calcium from intracellular stores in a similar way to thapsigargin, a known inhibitor of the Sarco/Endoplasmic Reticulum Calcium ATPase pump (SERCA), but unlike thapsigargin, artemisinin blocks only the SERCA3 isoform. Inhibition of SERCA3 by artemisinin was irreversible and was inhibited by iron chelation, suggesting iron-catalysed alkylation of a specific cysteine residue in SERCA3 as the mechanism by which artemisinin inhibits neutrophil motility. In murine infection models, artemisinin potently suppressed neutrophil invasion into both peritoneum and lung in vivo and inhibited the release of cytokines/chemokines and NETs. This work suggests that artemisinin may have value as a therapy in conditions such as sepsis and Covid-19 in which over-activation of the innate immune system causes tissue injury that can lead to death

    Magnetic characterization of isolated candidate vertebrate magnetoreceptor cells

    Get PDF
    Over the past 50 y, behavioral experiments have produced a large body of evidence for the existence of a magnetic sense in a wide range of animals. However, the underlying sensory physiology remains poorly understood due to the elusiveness of the magnetosensory structures. Here we present an effective method for isolating and characterizing potential magnetite-based magnetoreceptor cells. In essence, a rotating magnetic field is employed to visually identify, within a dissociated tissue preparation, cells that contain magnetic material by their rotational behavior. As a tissue of choice, we selected trout olfactory epithelium that has been previously suggested to host candidate magnetoreceptor cells. We were able to reproducibly detect magnetic cells and to determine their magnetic dipole moment. The obtained values (4 to 100 fAm^2) greatly exceed previous estimates (0.5 fAm^2). The magnetism of the cells is due to a μm-sized intracellular structure of iron-rich crystals, most likely single-domain magnetite. In confocal reflectance imaging, these produce bright reflective spots close to the cell membrane. The magnetic inclusions are found to be firmly coupled to the cell membrane, enabling a direct transduction of mechanical stress produced by magnetic torque acting on the cellular dipole in situ. Our results show that the magnetically identified cells clearly meet the physical requirements for a magnetoreceptor capable of rapidly detecting small changes in the external magnetic field. This would also explain interference of ac powerline magnetic fields with magnetoreception, as reported in cattle
    corecore