315 research outputs found

    Investigation of the limits of nanoscale filopodial interactions

    Get PDF
    Mesenchymal stem cells are sensitive to changes in feature height, order and spacing. We had previously noted that there was an inverse relationship between osteoinductive potential and feature height on 15-, 55- and 90 nm-high titania nanopillars, with 15 nm-high pillars being the most effective substrate at inducing osteogenesis of human mesenchymal stem cells. The osteoinductive effect was somewhat diminished by decreasing the feature height to 8 nm, however, which suggested that there was a cut-off point, potentially associated with a change in cell–nanofeature interactions. To investigate this further, in this study, a scanning electron microscopy/three-dimensional scanning electron microscopy approach was used to examine the interactions between mesenchymal stem cells and the 8 and 15 nm nanopillared surfaces. As expected, the cells adopted a predominantly filopodial mode of interaction with the 15 nm-high pillars. Interestingly, fine nanoscale membrane projections, which we have termed ‘nanopodia,’ were also employed by the cells on the 8 nm pillars, and it seems that this is analogous to the cells ‘clinging on with their fingertips’ to this scale of features

    Increased dosage of the imprinted Ascl2 gene restrains two key endocrine lineages of the mouse Placenta

    Get PDF
    AbstractImprinted genes are expressed primarily from one parental allele by virtue of a germ line epigenetic process. Achaete-scute complex homolog 2 (Ascl2 aka Mash2) is a maternally expressed imprinted gene that plays a key role in placental and intestinal development. Loss-of-function of Ascl2 results in an expansion of the parietal trophoblast giant cell (P-TGC) lineage, an almost complete loss of Trophoblast specific protein alpha (Tpbpa) positive cells in the ectoplacental cone and embryonic failure by E10.5. Tpbpa expression marks the progenitors of some P-TGCs, two additional trophoblast giant cell lineages (spiral artery and canal), the spongiotrophoblast and the glycogen cell lineage. Using a transgenic model, here we show that elevated expression of Ascl2 reduced the number of P-TGC cells by 40%. Elevated Ascl2 also resulted in a marked loss of the spongiotrophoblast and a substantial mislocalisation of glycogen cells into the labyrinth. In addition, Ascl2-Tg placenta contained considerably more placental glycogen than wild type. Glycogen cells are normally located within the junctional zone in close contact with spongiotrophoblast cells, before migrating through the P-TGC layer into the maternal decidua late in gestation where their stores of glycogen are released. The failure of glycogen cells to release their stores of glycogen may explain both the inappropriate accumulation of glycogen and fetal growth restriction observed late in gestation in this model. In addition, using in a genetic cross we provide evidence that Ascl2 requires the activity of a second maternally expressed imprinted gene, Pleckstrin homology-like domain, family a, member 2 (Phlda2) to limit the expansion of the spongiotrophoblast. This “belts and braces” approach demonstrates the importance of genomic imprinting in regulating the size of the placental endocrine compartment for optimal placental development and fetal growth

    Dynamics and stress in gravity driven granular flow

    Full text link
    We study, using simulations, the steady-state flow of dry sand driven by gravity in two-dimensions. An investigation of the microscopic grain dynamics reveals that grains remain separated but with a power-law distribution of distances and times between collisions. While there are large random grain velocities, many of these fluctuations are correlated across the system and local rearrangements are very slow. Stresses in the system are almost entirely transfered by collisions and the structure of the stress tensor comes almost entirely from a bias in the directions in which collisions occur.Comment: 4 pages, 3 eps figures, RevTe

    Non-linear instability of Kerr-type Cauchy horizons

    Get PDF
    Using the general solution to the Einstein equations on intersecting null surfaces developed by Hayward, we investigate the non-linear instability of the Cauchy horizon inside a realistic black hole. Making a minimal assumption about the free gravitational data allows us to solve the field equations along a null surface crossing the Cauchy Horizon. As in the spherical case, the results indicate that a diverging influx of gravitational energy, in concert with an outflux across the CH, is responsible for the singularity. The spacetime is asymptotically Petrov type N, the same algebraic type as a gravitational shock wave. Implications for the continuation of spacetime through the singularity are briefly discussed.Comment: 11 pages RevTeX, two postscript figures included using epsf.st

    Cold Gas in Cluster Cores

    Full text link
    I review the literature's census of the cold gas in clusters of galaxies. Cold gas here is defined as the gas that is cooler than X-ray emitting temperatures (~10^7 K) and is not in stars. I present new Spitzer IRAC and MIPS observations of Abell 2597 (PI: Sparks) that reveal significant amounts of warm dust and star formation at the level of 5 solar masses per year. This rate is inconsistent with the mass cooling rate of 20 +/- 5 solar masses per year inferred from a FUSE [OVI] detection.Comment: 10 pages, conference proceeding

    Chandra X-ray observations of the 3C295 cluster core

    Get PDF
    We examine the properties of the X-ray gas in the central regions of the distant (z=0.46), X-ray luminous cluster of galaxies surrounding the powerful radio source 3C 295, using observations made with the Chandra Observatory. Between radii of 50-500 kpc, the cluster gas is approximately isothermal with an emission-weighted temperature, kT ~5 keV. Within the central 50 kpc radius this value drops to kT ~3.7 keV. The spectral and imaging Chandra data indicate the presence of a cooling flow within the central 50 kpc radius of the cluster, with a mass deposition rate of approximately 280 solar masses per year. We estimate an age for the cooling flow of 1-2 Gyr, which is approximately one thousand times older than the central radio source. We find no evidence in the X-ray spectra or images for significant heating of the X-ray gas by the radio source. We report the detection of an edge-like absorption feature in the spectrum for the central 50 kpc region, which may be due to oxygen-enriched dust grains. The implied mass in metals seen in absorption could have been accumulated by the cooling flow over its lifetime. Combining the results on the X-ray gas density profile with radio measurements of the Faraday rotation measure in 3C295, we estimate the magnetic field strength in the region of the cluster core to be B ~12 \muG.Comment: 27 pages, 16 figs, 5 tables. Accepted for publication in MNRA

    Limit on Bs0B^0_s oscillation using a jet charge method

    Get PDF
    A lower limit is set on the B_{s}^{0} meson oscillation parameter \Delta m_{s} using data collected from 1991 to 1994 by the ALEPH detector. Events with a high transverse momentum lepton and a reconstructed secondary vertex are used. The high transverse momentum leptons are produced mainly by b hadron decays, and the sign of the lepton indicates the particle/antiparticle final state in decays of neutral B mesons. The initial state is determined by a jet charge technique using both sides of the event. A maximum likelihood method is used to set a lower limit of \, \Delta m_{s}. The 95\% confidence level lower limit on \Delta m_s ranges between 5.2 and 6.5(\hbar/c^{2})~ps^{-1} when the fraction of b quarks from Z^0 decays that form B_{s}^{0} mesons is varied from 8\% to 16\%. Assuming that the B_{s}^{0} fraction is 12\%, the lower limit would be \Delta m_{s} 6.1(\hbar/c^{2})~ps^{-1} at 95\% confidence level. For x_s = \Delta m_s \, \tau_{B_s}, this limit also gives x_s 8.8 using the B_{s}^{0} lifetime of \tau_{B_s} = 1.55 \pm 0.11~ps and shifting the central value of \tau_{B_s} down by 1\sigma

    Measurement of the Bs0^0_s lifetime and production rate with Ds−l+^-_s l^+ combinations in Z decays

    Get PDF
    The lifetime of the \bs meson is measured in approximately 3 million hadronic Z decays accumulated using the ALEPH detector at LEP from 1991 to 1994. Seven different \ds decay modes were reconstructed and combined with an opposite sign lepton as evidence of semileptonic \bs decays. Two hundred and eight \dsl candidates satisfy selection criteria designed to ensure precise proper time reconstruction and yield a measured \bs lifetime of \mbox{\result .} Using a larger, less constrained sample of events, the product branching ratio is measured to be \mbox{\pbrresult
    • 

    corecore