We study, using simulations, the steady-state flow of dry sand driven by
gravity in two-dimensions. An investigation of the microscopic grain dynamics
reveals that grains remain separated but with a power-law distribution of
distances and times between collisions.
While there are large random grain velocities, many of these fluctuations are
correlated across the system and local rearrangements are very slow. Stresses
in the system are almost entirely transfered by collisions and the structure of
the stress tensor comes almost entirely from a bias in the directions in which
collisions occur.Comment: 4 pages, 3 eps figures, RevTe