5,130 research outputs found
The incidence and position of melanocytic nevi for the purposes of forensic image comparison
Expert witness opinion based on the comparison of images has been accepted by UK courts as admissible evidence in relation to issues of identity. Within images of the hand are a multiplicity of anatomical features of different aetiology, incidence and distribution patterns and this includes melanocytic nevi, referred to more colloquially as moles and/or birthmarks. The hand is not a common place for these isolated features to develop and so their presence in this anatomical region has the potential to be useful for issues of identity. The results of this study show that approximately 9 % of individuals in a sample of 476 hands, displayed at least one nevus on the back of their hand and, contrary to the literature, the incidence was found to be greater in females (15 % of female cohort) than males (7 % of male cohort). Almost a third of all nevi identified on the dorsum of the hand were abnormal or dysplastic. The most frequent location for these aggregations of melanocytes was in the central region of the dorsum of the hand or at the base of the index finger. The relevance of nevi identified in the image of a perpetrator’s hand and also on that of a suspect/accused is discussed in relation to the issue of whether the images have originated from the same individual
Tunneling spectra of strongly coupled superconductors: Role of dimensionality
We investigate numerically the signatures of collective modes in the
tunneling spectra of superconductors. The larger strength of the signatures
observed in the high-Tc superconductors, as compared to classical low-Tc
materials, is explained by the low dimensionality of these layered compounds.
We also show that the strong-coupling structures are dips (zeros in the d2I/dV2
spectrum) in d-wave superconductors, rather than the steps (peaks in d2I/dV2)
observed in classical s-wave superconductors. Finally we question the
usefulness of effective density of states models for the analysis of tunneling
data in d-wave superconductors.Comment: 8 pages, 6 figure
Candidatus Bartonella merieuxii, a potential new zoonotic Bartonella species in canids from Iraq.
Bartonellae are emerging vector-borne pathogens infecting erythrocytes and endothelial cells of various domestic and wild mammals. Blood samples were collected from domestic and wild canids in Iraq under the United States Army zoonotic disease surveillance program. Serology was performed using an indirect immunofluorescent antibody test for B. henselae, B. clarridgeiae, B. vinsonii subsp. berkhoffii and B. bovis. Overall seroprevalence was 47.4% in dogs (n = 97), 40.4% in jackals (n = 57) and 12.8% in red foxes (n = 39). Bartonella species DNA was amplified from whole blood and representative strains were sequenced. DNA of a new Bartonella species similar to but distinct from B. bovis, was amplified from 37.1% of the dogs and 12.3% of the jackals. B. vinsonii subsp. berkhoffii was also amplified from one jackal and no Bartonella DNA was amplified from foxes. Adjusting for age, the odds of dogs being Bartonella PCR positive were 11.94 times higher than for wild canids (95% CI: 4.55-31.35), suggesting their role as reservoir for this new Bartonella species. This study reports on the prevalence of Bartonella species in domestic and wild canids of Iraq and provides the first detection of Bartonella in jackals. We propose Candidatus Bartonella merieuxii for this new Bartonella species. Most of the Bartonella species identified in sick dogs are also pathogenic for humans. Therefore, seroprevalence in Iraqi dog owners and bacteremia in Iraqi people with unexplained fever or culture negative endocarditis requires further investigation as well as in United States military personnel who were stationed in Iraq. Finally, it will also be essential to test any dog brought back from Iraq to the USA for presence of Bartonella bacteremia to prevent any accidental introduction of a new Bartonella species to the New World
Using Flow Specifications of Parameterized Cache Coherence Protocols for Verifying Deadlock Freedom
We consider the problem of verifying deadlock freedom for symmetric cache
coherence protocols. In particular, we focus on a specific form of deadlock
which is useful for the cache coherence protocol domain and consistent with the
internal definition of deadlock in the Murphi model checker: we refer to this
deadlock as a system- wide deadlock (s-deadlock). In s-deadlock, the entire
system gets blocked and is unable to make any transition. Cache coherence
protocols consist of N symmetric cache agents, where N is an unbounded
parameter; thus the verification of s-deadlock freedom is naturally a
parameterized verification problem. Parametrized verification techniques work
by using sound abstractions to reduce the unbounded model to a bounded model.
Efficient abstractions which work well for industrial scale protocols typically
bound the model by replacing the state of most of the agents by an abstract
environment, while keeping just one or two agents as is. However, leveraging
such efficient abstractions becomes a challenge for s-deadlock: a violation of
s-deadlock is a state in which the transitions of all of the unbounded number
of agents cannot occur and so a simple abstraction like the one above will not
preserve this violation. In this work we address this challenge by presenting a
technique which leverages high-level information about the protocols, in the
form of message sequence dia- grams referred to as flows, for constructing
invariants that are collectively stronger than s-deadlock. Efficient
abstractions can be constructed to verify these invariants. We successfully
verify the German and Flash protocols using our technique
Recommended from our members
The Journey to R4D: An institutional history of an Australian Initiative on Food Security in Africa
Internal Revie
Analysis of vertebral chemistry to assess stock structure in a deep-sea shark, Etmopterus spinax
First published online: October 27, 2016Deep-sea sharks play a valuable ecological role helping maintain food web balance, yet they are vulnerable to commercial fishing because of slow growth rates and low reproductive capacity. Overfishing of sharks can heavily impact marine ecosystems and the fisheries these support. Knowledge of stock structure is integral to sustainable management of fisheries. The present study analysed vertebral chemistry using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to assay concentrations of 7Li, 23Na, 24Mg, 55Mn, 59Co, 60Ni, 63Cu, 66Zn, 85Rb, 88Sr, 138Ba and 208Pb to assess stock structure in a deep-sea shark, Etmopterus spinax, in Norwegian and French waters. Few studies have applied this technique to elasmobranch vertebrae and the present study represents its first application to a deep-sea shark. Three stocks were identified at the regional scale off western Norway, southern Norway, and France. At finer spatial scales there was evidence of strong population mixing. Overall, the general pattern of stock structure outlined herein provides some indication of the spatial scales at which stocks should be viewed as distinct fisheries management units. The identification of an effective multi-element signature for distinguishing E. spinax stocks utilizing Sr, Ba, Mg, Zn and Pb and the methodological groundwork laid in the present study could also expedite future research into stock structure for E. spinax and deep-sea elasmobranchs more generally.Matthew N. McMillan, Christopher Izzo, Claudia Junge, Ole Thomas Albert, Armelle Jung and Bronwyn M. Gillander
Experimentally exploring compressed sensing quantum tomography
In the light of the progress in quantum technologies, the task of verifying
the correct functioning of processes and obtaining accurate tomographic
information about quantum states becomes increasingly important. Compressed
sensing, a machinery derived from the theory of signal processing, has emerged
as a feasible tool to perform robust and significantly more resource-economical
quantum state tomography for intermediate-sized quantum systems. In this work,
we provide a comprehensive analysis of compressed sensing tomography in the
regime in which tomographically complete data is available with reliable
statistics from experimental observations of a multi-mode photonic
architecture. Due to the fact that the data is known with high statistical
significance, we are in a position to systematically explore the quality of
reconstruction depending on the number of employed measurement settings,
randomly selected from the complete set of data, and on different model
assumptions. We present and test a complete prescription to perform efficient
compressed sensing and are able to reliably use notions of model selection and
cross-validation to account for experimental imperfections and finite counting
statistics. Thus, we establish compressed sensing as an effective tool for
quantum state tomography, specifically suited for photonic systems.Comment: 12 pages, 5 figure
Comparison of BES measurements of ion-scale turbulence with direct, gyrokinetic simulations of MAST L-mode plasmas
Observations of ion-scale (k_y*rho_i <= 1) density turbulence of relative
amplitude dn_e/n_e <= 0.2% are available on the Mega Amp Spherical Tokamak
(MAST) using a 2D (8 radial x 4 poloidal channel) imaging Beam Emission
Spectroscopy (BES) diagnostic. Spatial and temporal characteristics of this
turbulence, i.e., amplitudes, correlation times, radial and perpendicular
correlation lengths and apparent phase velocities of the density contours, are
determined by means of correlation analysis. For a low-density, L-mode
discharge with strong equilibrium flow shear exhibiting an internal transport
barrier (ITB) in the ion channel, the observed turbulence characteristics are
compared with synthetic density turbulence data generated from global,
non-linear, gyro-kinetic simulations using the particle-in-cell (PIC) code
NEMORB. This validation exercise highlights the need to include increasingly
sophisticated physics, e.g., kinetic treatment of trapped electrons,
equilibrium flow shear and collisions, to reproduce most of the characteristics
of the observed turbulence. Even so, significant discrepancies remain: an
underprediction by the simulations of the turbulence amplituide and heat flux
at plasma periphery and the finding that the correlation times of the
numerically simulated turbulence are typically two orders of magnitude longer
than those measured in MAST. Comparison of these correlation times with various
linear timescales suggests that, while the measured turbulence is strong and
may be `critically balanced', the simulated turbulence is weak.Comment: 27 pages, 11 figure
- …