285 research outputs found
Lower Extremity Changes During Gait and the Contribution to Future Injury in Asymptomatic Pes Planus
Introduced species and extreme weather as key drivers of reproductive output in three sympatric albatrosses
Invasive species present a major conservation threat globally and nowhere are their affects more pronounced than in island ecosystems. Determining how native island populations respond demographically to invasive species can provide information to mitigate the negative effects of invasive species. Using 20 years of mark-recapture data from three sympatric species of albatrosses (black-browed Thalassarche melanophris, grey-headed T. chrysostoma, and light-mantled albatrosses Phoebetria palpebrata), we quantified the influence of invasive European rabbits Oryctolagus cuniculus and extreme weather patterns on breeding probability and success. Temporal variability in rabbit density explained 33â76% of the variability in breeding probability for all three species, with severe decreases in breeding probability observed after a lag period following highest rabbit numbers. For black-browed albatrosses, the combination of extreme rainfall and high rabbit density explained 33% of total trait variability and dramatically reduced breeding success. We showed that invasive rabbits and extreme weather events reduce reproductive output in albatrosses and that eliminating rabbits had a positive effect on albatross reproduction. This illustrates how active animal management at a local breeding site can result in positive population outcomes even for wide ranging animals like albatrosses where influencing vital rates during their at-sea migrations is more challenging
In-situ observations using tagged animals
Marine mammals help gather information on some of the harshest environments on the planet, through the use of miniaturized ocean sensors glued on their fur. Since 2004, hundreds of diving marine animals, mainly Antarctic and Arctic seals, have been fitted with a new generation of Argos tags developed by the Sea Mammal Research Unit of the University of St Andrews in Scotland, UK. These tags investigate the at-sea ecology of these animals while simultaneously collecting valuable oceanographic data. Some of the study species travel thousands of kilometres continuously diving to great depths (up to 2100 m). The resulting data are now freely available to the global scientific community at http://www.meop.net. Despite great progress in their reliability and data accuracy, the current generation of loggers while approaching standard ARGO quality specifications have yet to match them. Yet, improvements are underway; they involve updating the technology, implementing a more systematic phase of calibration and taking benefit of the recently acquired knowledge on the dynamical response of sensors. Together these efforts are rapidly transforming animal tagging into one of the most important sources of oceanographic data in polar regions and in many coastal areas.Publisher PDFNon peer reviewe
Rare Copy Number Variants in \u3cem\u3eNRXN1\u3c/em\u3e and \u3cem\u3eCNTN6\u3c/em\u3e Increase Risk for Tourette Syndrome
Tourette syndrome (TS) is a model neuropsychiatric disorder thought to arise from abnormal development and/or maintenance of cortico-striato-thalamo-cortical circuits. TS is highly heritable, but its underlying genetic causes are still elusive, and no genome-wide significant loci have been discovered to date. We analyzed a European ancestry sample of 2,434 TS cases and 4,093 ancestry-matched controls for rare (\u3c 1% frequency) copy-number variants (CNVs) using SNP microarray data. We observed an enrichment of global CNV burden that was prominent for large (\u3e 1 Mb), singleton events (OR = 2.28, 95% CI [1.39â3.79], p = 1.2 Ă 10â3) and known, pathogenic CNVs (OR = 3.03 [1.85â5.07], p = 1.5 Ă 10â5). We also identified two individual, genome-wide significant loci, each conferring a substantial increase in TS risk (NRXN1 deletions, OR = 20.3, 95% CI [2.6â156.2]; CNTN6 duplications, OR = 10.1, 95% CI [2.3â45.4]). Approximately 1% of TS cases carry one of these CNVs, indicating that rare structural variation contributes significantly to the genetic architecture of TS
Disentangling the influence of three major threats on the demography of an albatross community
Climate change, fisheries and invasive species represent three pervasive threats to seabirds, globally. Understanding the relative influence and compounding nature of marine and terrestrial threats on the demography of seabird communities is vital for evidence-based conservation. Using 20 years of capture-mark-recapture data from four sympatric species of albatross (black-browed Thalassarche melanophris, gray-headed T. chrysostoma, light-mantled Phoebetria palpebrata and wandering Diomedea exulans) at subantarctic Macquarie Island, we quantified the temporal variability in survival, breeding probability and success. In three species (excluding the wandering albatross because of their small population), we also assessed the influence of fisheries, oceanographic and terrestrial change on these rates. The Southern Annular Mode (SAM) explained 20.87â29.38% of the temporal variability in survival in all three species and 22.72â28.60% in breeding success for black-browed and gray-headed albatross, with positive SAM events related to higher success. The El Niño Southern Oscillation (ENSO) Index explained 21.14â44.04% of the variability in survival, with higher survival rates following La Niña events. For black-browed albatrosses, effort in south-west Atlantic longline fisheries had a negative relationship with survival and explained 22.75â32.21% of the variability. Whereas increased effort in New Zealand trawl fisheries were related to increases in survival, explaining 21.26â28.29 % of variability. The inclusion of terrestrial covariates, reflecting extreme rainfall events and rabbit-driven habitat degradation, explained greater variability in trends breeding probability than oceanographic or fisheries covariates for all three species. These results indicate managing drivers of demographic trends that are most easily controlled, such as fisheries and habitat degradation, will be a viable option for some species (e.g., black-browed albatross) but less effective for others (e.g., light-mantled albatross). Our results illustrate the need to integrate fisheries, oceanographic and terrestrial processes when assessing demographic variability and formulating the appropriate management response
Biology and conservation of freshwater bivalves : past, present and future perspectives
Freshwater bivalves have been highly
threatened by human activities, and recently their
global decline has been causing conservational and
social concern. In this paper, we review the most
important research events in freshwater bivalve biology
calling attention to the main scientific achievements.
A great bias exists in the research effort, with
much more information available for bivalve species
belonging to the Unionida in comparison to other
groups. The same is true for the origin of these studies,
since the publishing pattern does not always correspond
to the hotspots of biodiversity but is concentrated in the northern hemisphere mainly in
North America, Europe and Russia, with regions such
as Africa and Southeast Asia being quite understudied.
We also summarize information about past, present
and future perspectives concerning the most important
research topics that include taxonomy, systematics,
anatomy, physiology, ecology and conservation of
freshwater bivalves. Finally, we introduce the articles
published in this Hydrobiologia special issue related
with the International Meeting on Biology and Conservation
of Freshwater Bivalves held in 2012 in
Bragancža, Portugal.We would like to express our gratitude to our sponsors and institutions, especially to the Polytechnic Institute of Braganca for all the logistic support. We acknowledge all keynote speakers, authors, session chairpersons and especially to all attendees whose contributions were fundamental for the success of this meeting. We would also like to thank all referees of this special issue and to Koen Martens, Editor-in-Chief of Hydrobiologia, for all the valuable comments and suggestions. The chronogram was built with the help of the expert opinion of fellow colleagues Rafael Araujo, Arthur Bogan, Kevin Cummings, Dan Graf, Wendell Haag, Karl-Otto Nagel and David Strayer to whom we are very grateful. The authors acknowledge the support provided by Portuguese Foundation for Science and Technology (FCT) and COMPETE funds-projects CONBI (Contract: PTDC/AAC-AMB/117688/2010) and ECO-IAS (Contract: PTDC/AAC-AMB/116685/2010), and by the European Regional Development Fund (ERDF) through the COMPETE, under the project "PEst-C/MAR/LA0015/2011"
Does student loan debt deter higher education participation? New evidence from England
Research among prospective UK undergraduates in 2002 found that some students, especially from low social classes, were deterred from applying to university because of fear of debt. This paper investigates whether this is still the case today in England despite the changing higher education landscape since 2002. The paper describes findings from a 2015 survey of prospective undergraduates and compares them with those from the 2002 study. We find that studentsâ attitudes to taking on student loan debt are more favorable in 2015 than in 2002. Debt averse attitudes remain much stronger among lower-class students than among upper-class students, and more so than in 2002. However, lower-class students did not have stronger debt averse attitudes than middle-class students. Debt averse attitudes seem more likely to deter planned higher education participation among lower-class students in 2015 than in 2002
Galaxy colours in high redshift X-ray selected clusters - I: Blue galaxy fractions in eight clusters
We present initial results from a wide-field, multi-colour imaging project,
designed to study galaxy evolution in X-ray selected clusters at intermediate
(z~0.25) and high redshifts (z~0.5). In this paper we give blue galaxy
fractions from eight X-ray selected clusters, drawn from a combined sample of
three X-ray surveys. We find that all the clusters exhibit excess blue galaxy
populations over the numbers observed in local systems, though a large scatter
is present in the results. We find no significant correlation of blue fraction
with redshift at z>0.2 although the large scatter could mask a positive trend.
We also find no systematic trend of blue fraction with X-ray luminosity. We
show that the blue fraction is a function of (a) radius within a cluster, (b)
absolute magnitude and (c) the passbands used to measure the colour. We find
that our blue fractions (f_b) from galaxy colours close to restframe (U-B),
f_b~0.4, are systematically higher than those from restframe (B-V) colours,
f_b~0.2. We conclude this effect is real, may offer a partial explanation of
the widely differing levels of blue fraction found in previous studies and may
have implications for biases in optical samples selected in different bands.
While the increasing blue fraction with radius can be interpreted as evidence
of cluster infall of field galaxies, the exact physical processes which these
galaxies undergo is unclear. We estimate that, in the cores of the more massive
clusters, galaxies should be experiencing ram--pressure stripping of galactic
gas by the intra--cluster medium. The fact that our low X-ray luminosity
systems show a similar blue fraction as the high luminosity systems, as well as
a significant blue fraction gradient with radius, implies other physical
effects are also important.Comment: Accepted for publication in MNRA
Overexpression of Hydroxynitrile Lyase in Cassava Roots Elevates Protein and Free Amino Acids while Reducing Residual Cyanogen Levels
Cassava is the major source of calories for more than 250 million Sub-Saharan Africans, however, it has the lowest protein-to-energy ratio of any major staple food crop in the world. A cassava-based diet provides less than 30% of the minimum daily requirement for protein. Moreover, both leaves and roots contain potentially toxic levels of cyanogenic glucosides. The major cyanogen in cassava is linamarin which is stored in the vacuole. Upon tissue disruption linamarin is deglycosylated by the apolplastic enzyme, linamarase, producing acetone cyanohydrin. Acetone cyanohydrin can spontaneously decompose at pHs >5.0 or temperatures >35°C, or is enzymatically broken down by hydroxynitrile lyase (HNL) to produce acetone and free cyanide which is then volatilized. Unlike leaves, cassava roots have little HNL activity. The lack of HNL activity in roots is associated with the accumulation of potentially toxic levels of acetone cyanohydrin in poorly processed roots. We hypothesized that the over-expression of HNL in cassava roots under the control of a root-specific, patatin promoter would not only accelerate cyanogenesis during food processing, resulting in a safer food product, but lead to increased root protein levels since HNL is sequestered in the cell wall. Transgenic lines expressing a patatin-driven HNL gene construct exhibited a 2â20 fold increase in relative HNL mRNA levels in roots when compared with wild type resulting in a threefold increase in total root protein in 7 month old plants. After food processing, HNL overexpressing lines had substantially reduced acetone cyanohydrin and cyanide levels in roots relative to wild-type roots. Furthermore, steady state linamarin levels in intact tissues were reduced by 80% in transgenic cassava roots. These results suggest that enhanced linamarin metabolism contributed to the elevated root protein levels
Convergence of marine megafauna movement patterns in coastal and open oceans
The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animalsâ movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyze a global dataset of âŒ2.8 million locations from >2,600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patterns when moving close to coasts compared with more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal microhabitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise, and declining oxygen content
- âŠ