104 research outputs found
Shining new light on mammalian diving physiology using wearable near-infrared spectroscopy
Investigation of marine mammal dive-by-dive blood distribution and oxygenation has been limited by a lack of non-invasive technology for use in freely diving animals. Here, we developed a non-invasive near-infrared spectroscopy (NIRS) device to measure relative changes in blood volume and haemoglobin oxygenation continuously in the blubber and brain of voluntarily diving harbour seals. Our results show that seals routinely exhibit preparatory peripheral vasoconstriction accompanied by increased cerebral blood volume approximately 15 s before submersion. These anticipatory adjustments confirm that blood redistribution in seals is under some degree of cognitive control that precedes the mammalian dive response. Seals also routinely increase cerebral oxygenation at a consistent time during each dive, despite a lack of access to ambient air. We suggest that this frequent and reproducible reoxygenation pattern, without access to ambient air, is underpinned by previously unrecognised changes in cerebral drainage. The ability to track blood volume and oxygenation in different tissues using NIRS will facilitate a more accurate understanding of physiological plasticity in diving animals in an increasingly disturbed and exploited environment
Near-infrared spectroscopy as a tool for marine mammal research and care
This project was partially funded by the Department for Business, Energy and Industrial Strategy Offshore Energy Strategic Environmental Assessment Programme. Supplementary funding supporting JM was provided by the US Office of Naval Research (ONR) grant nos. N00014-18-1-2062 and N00014-20-1-2709. Supplementary funding supporting AF and JM was provided by the US Office of Naval Research (ONR) grant no. N00014-19-1-2560. Supplementary funding supporting BS-C, JK, and AR was provided by the US Office of Naval Research (ONR) grant no. N00014-19-1-1223.Developments in wearable human medical and sports health trackers has offered new solutions to challenges encountered by eco-physiologists attempting to measure physiological attributes in freely moving animals. Near-infrared spectroscopy (NIRS) is one such solution that has potential as a powerful physio-logging tool to assess physiology in freely moving animals. NIRS is a non-invasive optics-based technology, that uses non-ionizing radiation to illuminate biological tissue and measures changes in oxygenated and deoxygenated hemoglobin concentrations inside tissues such as skin, muscle, and the brain. The overall footprint of the device is small enough to be deployed in wearable physio-logging devices. We show that changes in hemoglobin concentration can be recorded from bottlenose dolphins and gray seals with signal quality comparable to that achieved in human recordings. We further discuss functionality, benefits, and limitations of NIRS as a standard tool for animal care and wildlife tracking for the marine mammal research community.Publisher PDFPeer reviewe
Partial pressure of oxygen in adipose tissue and its relationship with fatness in a natural animal model of extreme fat deposition, the grey seal
Excessive adiposity is associated with altered oxygen tension and comorbidities in humans. In contrast, marine mammals have high adiposity with no apparent detrimental effects. However, partial pressure of oxygen (Po2) in their subcutaneous adipose tissue (blubber) and its relationship with fatness have not been reported. We measured Po2 and temperature at different blubber depths in 12 healthy juvenile grey seals. Fatness was estimated from blubber thickness and morphometric parameters. Simultaneously, we monitored breathing pattern; heart rate and arterial blood saturation with a pulse oximeter; and relative changes in total hemoglobin, deoxyhemoglobin, and oxyhemoglobin in blubber capillaries using near-infrared spectroscopy (NIRS) as proxies for local oxygenation changes. Blubber Po2 ranged from 14.5 to 71.4 mmHg (39.2 ± 14.1 mmHg), which is similar to values reported in other species. Blubber Po2 was strongly and negatively associated with fatness (LME: p < 0.0001, R2marginal = 0.53, R2conditional = 0.64, n = 10), but not with blubber depth. No other parameters explained variability in Po2, suggesting arterial blood and local oxygen delivery did not vary within and between measurements. The fall in blubber Po2 with increased fatness in seals is consistent with other animal models of rapid fat deposition. However, the Po2 levels at which blubber becomes hypoxic and consequences of low blubber Po2 for its health and function, particularly in very fat individuals, remain unknown. How seals avoid detrimental effects of low oxygen tension in adipose tissue, despite their high and fluctuating adiposity, is a fruitful avenue to explore
Wearable near-infrared spectroscopy as a physiological monitoring tool for seals under anaesthesia
Chemical immobilisation of pinnipeds is a routine procedure in research and veterinary practice. Yet, there are inevitable risks associated with chemical immobilisation, and the physiological response to anaesthetic agents in pinnipeds remains poorly understood. The current study used wearable continuous-wave near-infrared spectroscopy (NIRS) data from 10 trials of prolonged anaesthesia (0.5 to 1.4 h) induced through ketamine and midazolam in five grey seals (Halichoerus grypus) involved in other procedures. The aim of this study was to (1) analyse the effect of each compound on heart rate, arterial oxygen saturation (SpO2), and relative concentration changes in oxygenated [ΔO2Hb] and deoxygenated haemoglobin [ΔHHb] in cerebral tissue and (2) to investigate the use of NIRS as a real-time physiological monitoring tool during chemical immobilisation. Average group responses of ketamine (n = 27) and midazolam (n = 11) administrations were modelled using generalised additive mixed models (GAMM) for each dependent variable. Following ketamine and midazolam administration, [ΔHHb] increased and [ΔO2Hb] remained relatively stable, which was indicative of apnoea. Periods of apnoea were confirmed from respiratory band data, which were simultaneously collected during drugging trials. Given that SpO2 remained at 97% during apnoea, we hypothesized that increasing cerebral [ΔHHb] was a result of venous congestion as opposed to decreased oxygen delivery. Changes in heart rate were limited and appeared to be driven by the individual pharmacological actions of each drug. Future research could include simultaneous measures of metabolic rate, such as the relative change in concentration of cytochrome-c-oxidase, to guide operators in determining when apnoea should be considered prolonged if changes in [ΔHHb] and [ΔO2Hb] occur beyond the limits recorded in this study. Our findings support the use of NIRS as real-time physiological monitoring tool during pinniped chemical immobilisation, which could assist veterinarians and researchers in performing safe anaesthetic procedures
Investigating clove oil and its derivatives as anaesthetic agents for decapod crustaceans to improve welfare commercially and at slaughter
Decapods have been recently classified as sentient beings in UK policy and therefore the establishment of humane methods for the live transportation and slaughter of commercially valuable shellfish as well as for decapods used in research is critical. Formerly overlooked, the use of anaesthetics provides a promising avenue for improving welfare standards for husbandry and slaughter for decapod crustaceans destined for human consumption or research. In particular, clove oil and its derivatives (eugenol and isoeugenol) have been trialled and recommended in literature as naturally-derived and effective, reversible anaesthetic compounds for a variety of decapods, including two commercially important British shellfish, brown crab (Cancer pagurus) and Norway lobster (Nephrops norvegicus). Further investigations should be undertaken to confirm the use of such anaesthetics is suitable for improving welfare standards in the British shellfish sector and in research to ensure that when the legislation changes, humane solutions are present
Metabolic heat loss in southern elephant seals (Mirounga leonina) differs with stage of moult and between habitats
The moult in southern elephant seals (Mirounga leonina) represents an especially energetically demanding period during which seals must maintain high skin temperature to facilitate complete replacement of body fur and upper dermis. In this study, heat flux from the body surface was measured on 18 moulting southern elephant seals to estimate metabolic heat loss in three different habitats (beach, wallow and vegetation). Temperature data loggers were also deployed on 10 southern elephant seals to monitor skin surface temperature. On average, heat loss of animals on the beach was greater than in wallows or vegetation, and greater in wallows than in vegetation. Heat loss across all habitats during the moult equated to 1.8 x resting metabolic rate (RMR). The greatest heat loss of animals was recorded in the beach habitat during the late moult, that represented 2.3 x RMR. Mass loss was 3.6 ± 0.3 kg day-1, resulting in changes in body condition as the moult progressed. As body condition declined, skin surface temperature also decreased, suggesting that as animals approached the end of the moult blood flow to the skin surface was no longer required for hair growth
Connectivity: insights from the U.S. Long Term Ecological Research Network
Ecosystems across the United States are changing in complex and surprising ways. Ongoing demand for critical ecosystem services requires an understanding of the populations and communities in these ecosystems in the future. This paper represents a synthesis effort of the U.S. National Science Foundation-funded Long-Term Ecological Research (LTER) network addressing the core research area of “populations and communities.” The objective of this effort was to show the importance of long-term data collection and experiments for addressing the hardest questions in scientific ecology that have significant implications for environmental policy and management. Each LTER site developed at least one compelling case study about what their site could look like in 50–100 yr as human and environmental drivers influencing specific ecosystems change. As the case studies were prepared, five themes emerged, and the studies were grouped into papers in this LTER Futures Special Feature addressing state change, connectivity, resilience, time lags, and cascading effects. This paper addresses the “connectivity” theme and has examples from the Phoenix (urban), Niwot Ridge (alpine tundra), McMurdo Dry Valleys (polar desert), Plum Island (coastal), Santa Barbara Coastal (coastal), and Jornada (arid grassland and shrubland) sites. Connectivity has multiple dimensions, ranging from multi-scalar interactions in space to complex interactions over time that govern the transport of materials and the distribution and movement of organisms. The case studies presented here range widely, showing how land-use legacies interact with climate to alter the structure and function of arid ecosystems and flows of resources and organisms in Antarctic polar desert, alpine, urban, and coastal marine ecosystems. Long-term ecological research demonstrates that connectivity can, in some circumstances, sustain valuable ecosystem functions, such as the persistence of foundation species and their associated biodiversity or, it can be an agent of state change, as when it increases wind and water erosion. Increased connectivity due to warming can also lead to species range expansions or contractions and the introduction of undesirable species. Continued long-term studies are essential for addressing the complexities of connectivity. The diversity of ecosystems within the LTER network is a strong platform for these studies
The New Era of Physio-Logging and Their Grand Challenges.
International audienc
Fine Definition of the CXCR4-Binding Region on the V3 Loop of Feline Immunodeficiency Virus Surface Glycoprotein
The chemokine receptor CXCR4 is shared by primary and laboratory-adapted strains of feline immunodeficiency virus (FIV) for viral entry. Our previous studies implicated a contiguous nine-amino-acid region of the V3 loop of the FIV envelope surface as important in CXCR4 binding and virus entry. The binding is specific for CXCR4 since it can be inhibited by AMD3100, a selective CXCR4 inhibitor. Additional site-directed mutagenesis was used to further reveal the key residues. Binding studies indicated that basic residues R395, K397, R399 as well as N398 are critical for CXCR4 binding. The effect of other amino acid residues on receptor binding depends on the type of amino acid residue substituted. The binding study results were confirmed on human CXCR4-expressing SupT1 cells and correlated with entry efficiency using a virus entry assay. Amino acid residues critical for CXCR4 are not critical for interactions with the primary binding receptor CD134, which has an equivalent role as CD4 for HIV-1 binding. The ELISA results show that W394 and W400 are crucial for the recognition by neutralizing anti-V3 antibodies. Since certain strains of HIV-1 also use CXCR4 as the entry receptor, the findings make the feline model attractive for development of broad-based entry antagonists and for study of the molecular mechanism of receptor/virus interactions
- …