525 research outputs found

    Nanoscale electrochemical patterning reveals the active sites for catechol oxidation at graphite surfaces

    Get PDF
    Graphite-based electrodes (graphite, graphene, and nanotubes) are used widely in electrochemistry, and there is a long-standing view that graphite step edges are needed to catalyze many reactions, with the basal surface considered to be inert. In the present work, this model was tested directly for the first time using scanning electrochemical cell microscopy reactive patterning and shown to be incorrect. For the electro-oxidation of dopamine as a model process, the reaction rate was measured at high spatial resolution across a surface of highly oriented pyrolytic graphite. Oxidation products left behind in a pattern defined by the scanned electrochemical cell served as surface-site markers, allowing the electrochemical activity to be correlated directly with the graphite structure on the nanoscale. This process produced tens of thousands of electrochemical measurements at different locations across the basal surface, unambiguously revealing it to be highly electrochemically active, with step edges providing no enhanced activity. This new model of graphite electrodes has significant implications for the design of carbon-based biosensors, and the results are additionally important for understanding electrochemical processes on related sp2-hybridized materials such as pristine graphene and nanotubes

    New approaches and applications in electrochemical scanning probe microscopy

    Get PDF
    This thesis is concerned with the development of new electrochemical scanning probe techniques and the application of these to biological problems. These techniques allow high resolution quantitative investigations of surface processes through measurements at a precisely placed electrode probe. A new technique, called intermittent contact scanning electrochemical microscopy, which allowed the probe-surface distance to be decisively determined through the physical interaction of the probe with the surface was developed. Separately, a new type of dual electrode probe was developed and characterised, and a new instrument (including both hardware and software) capable of a wide range of electrochemical imaging modes was developed with wide applications. The quantitative analysis of the electrochemical signal, typically measured at the probe, requires understanding the mass transport between the probe and the surface. Finite element modelling was used extensively throughout to solve the mass transport problem and therefore quantitatively analyse experimental results. Intermittent contact scanning electrochemical microscopy was used to quantify the mass transport through a porous biological membrane, dentin, that separates the pulp and enamel in teeth. Oxygen generation and consumption rates during photosynthesis were determined by measuring the local oxygen flux at an electrode placed a precise distance above a monolayer of isolated chloroplasts or thylakoid membranes. Finally, the new dual electrode probe was used to measure the reduction of an artificial electron acceptor by isolated thylakoid membranes

    Nanoscale intermittent contact-scanning electrochemical microscopy

    Get PDF
    A major theme in scanning electrochemical microscopy (SECM) is a methodology for nanoscale imaging with distance control and positional feedback of the tip. We report the expansion of intermittent contact (IC)-SECM to the nanoscale, using disk-type Pt nanoelectrodes prepared using the laser-puller sealing method. The Pt was exposed using a focused ion beam milling procedure to cut the end of the electrode to a well-defined glass sheath radius, which could also be used to reshape the tips to reduce the size of the glass sheath. This produced nanoelectrodes that were slightly recessed, which was optimal for IC-SECM on the nanoscale, as it served to protect the active part of the tip. A combination of finite element method simulations, steady-state voltammetry and scanning electron microscopy for the measurement of critical dimensions, was used to estimate Pt recession depth. With this knowledge, the tip-substrate alignment could be further estimated by tip approach curve measurements. IC-SECM has been implemented by using a piezo-bender actuator for the detection of damping of the oscillation amplitude of the tip, when IC occurs, which was used as a tip-position feedback mechanism. The piezo-bender actuator improves significantly on the performance of our previous setup for IC-SECM, as the force acting on the sample due to the tip is greatly reduced, allowing studies with more delicate tips. The capability of IC-SECM is illustrated with studies of a model electrode (metal/glass) substrate

    Free-choice learning in school science : a model for collaboration between formal and informal science educators

    Get PDF
    The informal science education sector has been found to foster engagement with science, whereas formal science education has been criticised as disconnected from students’ lives and experiences. Consequently, there have been calls for greater collaboration between formal and informal sectors. This study aimed to create such a ‘third space’ for science education by linking a university science educator with schools to create spaces for increased student choice in learning. The community of inquiry pedagogical model was used to manage a series of discussions about cutting edge science with 507 students aged 11-14 in 20 state schools in the UK. These classes substituted for school science lessons. Studying learning in free choice environments is challenging due to the range of possible outcomes. Data was collected using participant observations, questionnaires and interviews. Teachers’ and students’ responses were analysed using Falk and Dierking’s Contextual Model of Learning. This allowed us to consider the totality of students’ experiences whilst acknowledging the complexity of free choice spaces. Findings indicate that this third space allowed students to exercise choice and control over their learning, and to connect science with their prior knowledge and interests. However, choice can also act as a barrier to learning if students lack sufficient prior knowledge or are uncomfortable with content. Students identified the role of peers and facilitated discussion as important. This indicates that there are benefits to opening up spaces for free choice learning in school science, and we suggest the community of inquiry as a model to achieve this

    High-speed electrochemical imaging

    Get PDF
    The design, development, and application of high-speed scanning electrochemical probe microscopy is reported. The approach allows the acquisition of a series of high-resolution images (typically 1000 pixels ÎŒm–2) at rates approaching 4 seconds per frame, while collecting up to 8000 image pixels per second, about 1000 times faster than typical imaging speeds used up to now. The focus is on scanning electrochemical cell microscopy (SECCM), but the principles and practicalities are applicable to many electrochemical imaging methods. The versatility of the high-speed scan concept is demonstrated at a variety of substrates, including imaging the electroactivity of a patterned self-assembled monolayer on gold, visualization of chemical reactions occurring at single wall carbon nanotubes, and probing nanoscale electrocatalysts for water splitting. These studies provide movies of spatial variations of electrochemical fluxes as a function of potential and a platform for the further development of high speed scanning with other electrochemical imaging techniques

    Simultaneous interfacial reactivity and topography mapping with scanning ion conductance microscopy

    Get PDF
    Scanning ion conductance microscopy (SICM) is a powerful technique for imaging the topography of a wide range of materials and interfaces. In this report, we develop the use and scope of SICM, showing how it can be used for mapping spatial distributions of ionic fluxes due to (electro)chemical reactions occurring at interfaces. The basic idea is that there is a change of ion conductance inside a nanopipet probe when it approaches an active site, where the ionic composition is different to that in bulk solution, and this can be sensed via the current flow in the nanopipet with an applied bias. Careful tuning of the tip potential allows the current response to be sensitive to either topography or activity, if desired. Furthermore, the use of a distance modulation SICM scheme allows reasonably faithful probe positioning using the resulting ac response, irrespective of whether there is a reaction at the interface that changes the local ionic composition. Both strategies (distance modulation or tuned bias) allow simultaneous topography-activity mapping with a single channel probe. The application of SICM reaction imaging is demonstrated on several examples, including voltammetric mapping of electrocatalytic reactions on electrodes and high-speed electrochemical imaging at rates approaching 4 s per image frame. These two distinct approaches provide movies of electrochemical current as a function of potential with hundreds of frames (images) of surface reactivity, to reveal a wealth of spatially resolved information on potential- (and time) dependent electrochemical phenomena. The experimental studies are supported by detailed finite element method modeling that places the technique on a quantitative footing

    Molecular functionalization of graphite surfaces : Basal Plane versus Step Edge electrochemical activity

    Get PDF
    The chemical functionalization of carbon surfaces has myriad applications, from tailored sensors to electrocatalysts. Here, the adsorption and electrochemistry of anthraquinone-2,6-disulfonate (AQDS) is studied on highly oriented pyrolytic graphite (HOPG) as a model sp2 surface. A major focus is to elucidate whether adsorbed electroactive AQDS can be used as a marker of step edges, which have generally been regarded as the main electroactive sites on graphite electrode surfaces. First, the macroscopic electrochemistry of AQDS is studied on a range of surfaces differing in step edge density by more than 2 orders of magnitude, complemented with ex situ tapping mode atomic force microscopy (AFM) data. These measurements show that step edges have little effect on the extent of adsorbed electroactive AQDS. Second, a new fast scan cyclic voltammetry protocol carried out with scanning electrochemical cell microscopy (SECCM) enables the evolution of AQDS adsorption to be followed locally on a rapid time scale. Subsequent AFM imaging of the areas probed by SECCM allows a direct correlation of the electroactive adsorption coverage and the actual step edge density of the entire working area. The amount of adsorbed electroactive AQDS and the electron transfer kinetics are independent of the step edge coverage. Last, SECCM reactive patterning is carried out with complementary AFM measurements to probe the diffusional electroactivity of AQDS. There is essentially uniform and high activity across the basal surface of HOPG. This work provides new methodology to monitor adsorption processes at surfaces and shows unambiguously that there is no correlation between the step edge density of graphite surfaces and the observed coverage of electroactive AQDS. The electroactivity is dominated by the basal surface, and studies that have used AQDS as a marker of steps need to be revised

    Electrochemical mapping reveals direct correlation between heterogeneous electron-transfer kinetics and local density of states in diamond electrodes

    Get PDF
    Conducting carbon materials: A multi-microscopy approach shows that local heterogeneous electron-transfer rates at conducting diamond electrodes correlate with the local density of electronic states. This model of electroactivity is of considerable value for the rational design of conducting diamond electrochemical technologies, and also provides key general insights on electrode structure controls in electrochemical kinetic

    Budget Processes: Theory and Experimental Evidence

    Get PDF
    This paper studies budget processes, both theoretically and experimentally. We compare the outcomes of bottom-up and top-down budget processes. It is often presumed that a top-down budget process leads to a smaller overall budget than a bottom-up budget process. Ferejohn and Krehbiel (1987) showed theoretically that this need not be the case. We test experimentally the theoretical predictions of their work. The evidence from these experiments lends strong support to their theory, both at the aggregate and the individual subject level

    Hopping intermittent contact-scanning electrochemical microscopy (HIC-SECM) as a new local dissolution kinetic probe : application to salicylic acid dissolution in aqueous solution

    Get PDF
    Dissolution kinetics of the (110) face of salicylic acid in aqueous solution is determined by hopping intermittent contact-scanning electrochemical microscopy (HIC-SECM) using a 2.5 ÎŒm diameter platinum ultramicroelectrode (UME). The method operates by translating the probe UME towards the surface at a series of positions across the crystal and inducing dissolution via the reduction of protons to hydrogen, which titrates the weak acid and promotes the dissolution reaction, but only when the UME is close to the crystal. Most importantly, as dissolution is only briefly and transiently induced at each location, the initial dissolution kinetics of an as-grown single crystal surface can be measured, rather than a surface which has undergone significant dissolution (pitting), as in other techniques. Mass transport and kinetics in the system are modelled using finite element method simulations which allows dissolution rate constants to be evaluated. It is found that the kinetics of an ‘as-grown’ crystal are much slower than for a surface that has undergone partial bulk dissolution (mimicking conventional techniques), which can be attributed to a dramatic change in surface morphology as identified by atomic force microscopy (AFM). The ‘as-grown’ (110) surface presents extended terrace structures to the solution which evidently dissolve slowly, whereas a partially dissolved surface has extensive etch features and step sites which greatly enhance dissolution kinetics. This means that crystals such as salicylic acid will show time-dependent dissolution kinetics (fluxes) that are strongly dependent on crystal history, and this needs to be taken into account to fully understand dissolution
    • 

    corecore