35 research outputs found

    The arthritis-associated HLA-B*27:05 allele forms more cell surface B27 dimer and free heavy chain ligands for KIR3DL2 than HLA-B*27:09

    Get PDF
    Objectives. HLA-B*27:05 is associated with AS whereas HLA-B*27:09 is not associated. We hypothesized that different interactions with KIR immune receptors could contribute to the difference in disease association between HLA-B*27:05 and HLAB*27:09. Thus, the objective of this study was to compare the formation of β2m-free heavy chain (FHC) including B27 dimers (B272) by HLA-B*27:05 and HLA-B*27:09 and their binding to KIR immunoreceptors. Methods. We studied the formation of HLA-B*27:05 and HLA-B*27:09 heterotrimers and FHC forms including dimers in vitro and in transfected cells. We investigated HLA-B*27:05 and HLA-B*27:09 binding to KIR3DL1, KIR3DL2 and LILRB2 by FACS staining with class I tetramers and by quantifying interactions with KIR3DL2CD3ε-reporter cells and KIR3DL2-expressing NK cells. We also measured KIR expression on peripheral blood NK and CD4 T cells from 18 HLA-B*27:05 AS patients, 8 HLA-B27 negative and 12 HLA-B*27:05+ and HLA-B*27:09+ healthy controls by FACS staining. Results. HLA-B*27:09 formed less B272 and FHC than HLA-B*27:05. HLA-B*27:05-expressing cells stimulated KIR3DL2CD3ε-reporter T cells more effectively. Cells expressing HLA-B*27:05 promoted KIR3DL2+ NK cell survival more strongly than HLA-B*27:09. HLA-B*27:05 and HLA-B*27:09 dimer tetramers stained KIR3DL1, KIR3DL2 and LILRB2 equivalently. Increased proportions of NK and CD4 T cells expressed KIR3DL2 in HLA-B*27:05+ AS patients compared with HLA-B*27:05+, HLA-B*27:09+ and HLA-B27− healthy controls. Conclusion. Differences in the formation of FHC ligands for KIR3DL2 by HLA-B*27:05 and HLA-B*27:09 could contribute to the differential association of these alleles with A

    Non-conventional forms of HLA-B27 are expressed in spondyloarthritis joints and gut tissue

    Get PDF
    AbstractObjectivesHuman leukocyte antigen (HLA)-B27 (B27) is the strongest genetic factor associated with development of Ankylosing Spondylitis and other spondyloarthropathies (SpA), yet the role it plays in disease pathogenesis remains unclear. We investigated the expression of potentially pathogenic non-conventional heavy chain forms (NC) of B27 in synovial and intestinal tissues obtained from SpA patients. We also determined the presence of NC-B27 in joints, lymphoid and gastrointestinal tissue from B27 transgenic (TG1) rats with M.tuberculosis-induced SpA.MethodsExpression of NC-B27 in human SpA joints and gut and in (21-3 × 283-2)F1 HLA-B27/Huβ2m rat tissue was determined by immunohistochemistry, flow cytometry and confocal microscopy analysis using HC10 and HD6 antibodies.ResultsBoth HC10- and HD6-reactive HLA molecules were present in synovial tissue from SpA patients. Both NC-B27 and KIR3DL2, a ligand for NC-B27, were expressed in inflamed terminal ileal tissues in patients with early SpA. Infiltrating cells in inflamed joint tissues isolated from B27 TG1 rats expressed high levels of NC-B27. NC-B27 were also expressed in joint-resident cells from ankle and tail joints of B27 TG1 rats prior to clinical arthritis. The expression of NC-B27 on B27 TG1 rat CD11b/c+, CD8α+, cells from spleens and LNs increased with animal age and disease progression.ConclusionsNon-conventional HLA class 1 molecules are expressed on resident and infiltrating cells in both synovial and GI tissues in human SpA. NC-B27 expression in joints and lymphoid tissues from B27 TG1 rats prior to the onset of arthritis is consistent with the hypothesis that they play a pathogenic role in SpA

    Salmonella exploits HLA-B27 and host unfolded protein responses to promote intracellular replication

    Get PDF
    A.N.A was funded by ARUK Fellowships Non-Clinical Career Development Fellowship Ref No: 18440. I.L. was funded by an ARUK PhD studentship Ref No: 17868. A.N.A and S.J.P were also in part funded by ARUK (grant 21261)Objective Salmonella enterica infections can lead to Reactive Arthritis (ReA), which can exhibit an association with human leucocyte antigen (HLA)-B*27:05, a molecule prone to misfolding and initiation of the unfolded protein response (UPR). This study examined how HLA-B*27:05 expression and the UPR affect the Salmonella life-cycle within epithelial cells. Methods Isogenic epithelial cell lines expressing two copies of either HLA-B*27:05 and a control HLA-B*35:01 heavy chain (HC) were generated to determine the effect on the Salmonella infection life-cycle. A cell line expressing HLA-B*27:05.HC physically linked to the light chain beta-2-microglobulin and a specific peptide (referred to as a single chain trimer, SCT) was also generated to determine the effects of HLA-B27 folding status on S. enterica life-cycle. XBP-1 venus and AMP dependent Transcription Factor (ATF6)-FLAG reporters were used to monitor UPR activation in infected cells. Triacin C was used to inhibit de novo lipid synthesis during UPR, and confocal imaging of ER tracker stained membrane allowed quantification of glibenclamide-associated membrane. Results S. enterica demonstrated enhanced replication with an altered cellular localisation in the presence of HLA-B*27:05.HC but not in the presence of HLA-B*27:05.SCT or HLA-B*35:01. HLA-B*27:05.HC altered the threshold for UPR induction. Salmonella activated the UPR and required XBP-1 for replication, which was associated with endoreticular membrane expansion and lipid metabolism. Conclusions HLA-B27 misfolding and a UPR cellular environment are associated with enhanced Salmonella replication, while Salmonella itself can activate XBP-1 and ATF6. These data provide a potential mechanism linking the life-cycle of Salmonella with the physicochemical properties of HLA-B27 and cellular events that may contribute to ReA pathogenesis. Our observations suggest that the UPR pathway maybe targeted for future therapeutic intervention.Publisher PDFPeer reviewe

    Hepcidin is regulated by promoter-associated histone acetylation and HDAC3.

    Get PDF
    Hepcidin regulates systemic iron homeostasis. Suppression of hepcidin expression occurs physiologically in iron deficiency and increased erythropoiesis but is pathologic in thalassemia and hemochromatosis. Here we show that epigenetic events govern hepcidin expression. Erythropoiesis and iron deficiency suppress hepcidin via erythroferrone-dependent and -independent mechanisms, respectively, in vivo, but both involve reversible loss of H3K9ac and H3K4me3 at the hepcidin locus. In vitro, pan-histone deacetylase inhibition elevates hepcidin expression, and in vivo maintains H3K9ac at hepcidin-associated chromatin and abrogates hepcidin suppression by erythropoietin, iron deficiency, thalassemia, and hemochromatosis. Histone deacetylase 3 and its cofactor NCOR1 regulate hepcidin; histone deacetylase 3 binds chromatin at the hepcidin locus, and histone deacetylase 3 knockdown counteracts hepcidin suppression induced either by erythroferrone or by inhibiting bone morphogenetic protein signaling. In iron deficient mice, the histone deacetylase 3 inhibitor RGFP966 increases hepcidin, and RNA sequencing confirms hepcidin is one of the genes most differentially regulated by this drug in vivo. We conclude that suppression of hepcidin expression involves epigenetic regulation by histone deacetylase 3.Hepcidin controls systemic iron levels by inhibiting intestinal iron absorption and iron recycling. Here, Pasricha et al. demonstrate that the hepcidin-chromatin locus displays HDAC3-mediated reversible epigenetic modifications during both erythropoiesis and iron deficiency

    Analyses of human vaccine-specific circulating and bone marrow-resident B cell populations reveal benefit of delayed vaccine booster dosing with blood-stage malaria antigens

    Get PDF
    We have previously reported primary endpoints of a clinical trial testing two vaccine platforms for the delivery of Plasmodium vivax malaria DBPRII: viral vectors (ChAd63, MVA), and protein/adjuvant (PvDBPII with 50µg Matrix-M™ adjuvant). Delayed boosting was necessitated due to trial halts during the pandemic and provides an opportunity to investigate the impact of dosing regimens. Here, using flow cytometry – including agnostic definition of B cell populations with the clustering tool CITRUS – we report enhanced induction of DBPRII-specific plasma cell and memory B cell responses in protein/adjuvant versus viral vector vaccinees. Within protein/adjuvant groups, delayed boosting further improved B cell immunogenicity compared to a monthly boosting regimen. Consistent with this, delayed boosting also drove more durable anti-DBPRII serum IgG. In an independent vaccine clinical trial with the P. falciparum malaria RH5.1 protein/adjuvant (50µg Matrix-M™) vaccine candidate, we similarly observed enhanced circulating B cell responses in vaccinees receiving a delayed final booster. Notably, a higher frequency of vaccine-specific (putatively long-lived) plasma cells was detected in the bone marrow of these delayed boosting vaccinees by ELISPOT and correlated strongly with serum IgG. Finally, following controlled human malaria infection with P. vivax parasites in the DBPRII trial, in vivo growth inhibition was observed to correlate with DBPRII-specific B cell and serum IgG responses. In contrast, the CD4+ and CD8+ T cell responses were impacted by vaccine platform but not dosing regimen and did not correlate with in vivo growth inhibition in a challenge model. Taken together, our DBPRII and RH5 data suggest an opportunity for protein/adjuvant dosing regimen optimisation in the context of rational vaccine development against pathogens where protection is antibody-mediated

    Spondylarthropathies (including psoriatic arthritis): 244. Validity of Colour Doppler and Spectral Doppler Ultrasound of Sacroilicac Joints Againts Physical Examination as Gold Standard

    Get PDF
    Background: Sacroiliac joints (SJ) involvement is a distinctive and charasteristic feature of Spondyloarthritis (SpA) and x-ray is the test routinely used to make a diagnosis. However, x-ray reveals late structural damage but cannot detect active inflammation. The objective of this study was to assess the validity of Doppler ultrasound in SJ. Methods: Prospective blinded and controlled study of SJ, in which three populations were compared. We studied 106 consecutive cases, who were divided into three groups: a) 53 patients diagnosed with SpA who had inflammatory lumbar and gluteal pain assessed by a rheumatologist; b) 26 patients diagnosed with SpA who didn't have SJ tenderness and had normal physical examination; c) control group of 27 subjects (healthy subjetcs or with mechanical lumbar pain). All patients included that were diagnosed with SpA met almost the European Spondyloarthropathy Study Group (ESSG) classification criteria. Physical examination of the SJ included: sacral sulcus tenderness, iliac gapping, iliac compression, midline sacral thrust test, Gaenslen's test, and Patrick s test were used as gold standard. Both SJ were examined with Doppler ultrasound (General Electric Logiq 9, Wauwatosa WI, USA) fitted with a 9-14 Mhz lineal probe. The ultrasonographer was blinded to clinical data. Doppler in SJ was assessed as positive when both Doppler colour and resistance index (RI) < 0.75 within the SJ area were present. Statistical analysis was performed estimating sensitivity and specificity against gold standard. The Kappa correlation coefficient was used for reliability study. Results: 106 cases (53 female, 55 male; mean age 36 10 years) were studied. There were no statistical differences between groups related to age or sex. Physical examination of SJ was positive in 38 patients (59 sacroiliac joints). US detected Doppler signal within SJ in 37 patients (58 SJ): 33 of them were symptomatic SpA (52 SJ), one of them were asymptomatic SpA (1 SJ) and one was a healthy control (1 SJ). The accuracy of US when compared to clinical data as gold standard at subject level in the overall group was: sensitivity of 68.6% and specificity of 85.7%, positive predictive value of 70.5% and negative predictive value of 84.5%. A positive likelihood ratio of 4.8, a negative likelihood ratio of 0.36 and a kappa coefficient of 0.55 were achieved. Conclusions: Doppler US of SJ seems to be a valid method to detect active SJ inflammation. Disclosure statement: The authors have declared no conflicts of interes

    Hepcidin is regulated by promoter-associated histone acetylation and HDAC3

    Get PDF
    Hepcidin regulates systemic iron homeostasis. Suppression of hepcidin expression occurs physiologically in iron deficiency and increased erythropoiesis but is pathologic in thalassemia and hemochromatosis. Here we show that epigenetic events govern hepcidin expression. Erythropoiesis and iron deficiency suppress hepcidin via erythroferrone-dependent and -independent mechanisms, respectively, in vivo, but both involve reversible loss of H3K9ac and H3K4me3 at the hepcidin locus. In vitro, pan-histone deacetylase inhibition elevates hepcidin expression, and in vivo maintains H3K9ac at hepcidin-associated chromatin and abrogates hepcidin suppression by erythropoietin, iron deficiency, thalassemia, and hemochromatosis. Histone deacetylase 3 and its cofactor NCOR1 regulate hepcidin; histone deacetylase 3 binds chromatin at the hepcidin locus, and histone deacetylase 3 knockdown counteracts hepcidin suppression induced either by erythroferrone or by inhibiting bone morphogenetic protein signaling. In iron deficient mice, the histone deacetylase 3 inhibitor RGFP966 increases hepcidin, and RNA sequencing confirms hepcidin is one of the genes most differentially regulated by this drug in vivo. We conclude that suppression of hepcidin expression involves epigenetic regulation by histone deacetylase 3.Hepcidin controls systemic iron levels by inhibiting intestinal iron absorption and iron recycling. Here, Pasricha et al. demonstrate that the hepcidin-chromatin locus displays HDAC3-mediated reversible epigenetic modifications during both erythropoiesis and iron deficiency

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes

    The role of HLA-B27 in the pathogenesis of spondyloarthritis

    No full text
    The Human Leukocyte Antigen (HLA)-B27 is a Major Histocompability Complex (MHC) class I antigen that is strongly associated with development of a group of closely related arthritic diseases, collectively known as the spondyloarthropathies (SpA). However, the mechanism by which HLA-B27 confers this susceptibility is unclear. Studies have shown that HLA-B27 heavy chains can form classical heterotrimers associated with peptide and β2-microglobulin (B27HT), and also non-classical heavy chain homodimers (B27₂). B27₂ assemble intracellularly during maturation and are also expressed at the cell surface following endosomal recycling of B27HT. A pathogenic role for B27₂ has been proposed in two of the current theories of pathogenesis: the B27 homodimer theory and the B27 misfolding and UPR theory. Yet, determinations of the extent, distribution, and triggers of B27₂ expression, as well as the functional consequences of its receptor interactions in AS pathogenesis, have been hampered by the lack of a specific detection reagent. Therefore, to investigate the role of B27₂ in AS, we generated a novel antibody to B27₂ – HD6 – using phage display technology, which binds to in vitro refolded B27₂ but not B27HT complexes by ELISA. This thesis provides evidence that HD6-reactive molecules, which include B27₂, are expressed at the cell surface in both cell lines and in the context of a disease setting. Recognition is B27-specific and strongly correlated with the magnitude of B27 expression, which could account for the lack of staining in some cell subsets. Moreover, staining was comparable in cell lines expressing the disease-associated B*27:05 and the less disease-associated subtype B*27:09. In addition, I have shown cells expressing physiologic levels of B27, including EBV-transformed BCLs and AS patient PBMCs, are capable of expressing the HD6 epitope upon low pH treatment. Interestingly, these ‘acid-inducible HD6’ molecules were absent from cells lacking a functional PLC. Finally, I have shown that HD6-reactive molecules can derive from pre-existing folding B27 molecules at the cell surface, which may be inhibited by the addition of exogenous B27-binding peptides. These findings are consistent with a mechanism of pathogenesis involving the surface expression and recognition of B27₂ and/or other aberrantly folded forms of B27, as proposed in the homodimer theory. HD6 will be a powerful tool to address the potential pathogenic role of B27₂ in SpA and may additionally have therapeutic potential
    corecore