200 research outputs found

    Lung function in oil spill responders 4-6 years after the Deepwater Horizon disaster

    Get PDF
    Oil spill response and clean-up (OSRC) workers were exposed to hazardous airborne chemicals following the 2010 Deepwater Horizon disaster. The aim of this study was to evaluate lung function in workers 4–6 years following the disaster using a prospective cohort. Participants who completed two spirometry test sessions 1–3 years, and 4–6 years after the spill (N = 1,838) were included and forced expiratory volume in 1 s (FEV1; ml), forced vital capacity (FVC; ml), and ratio (FEV1/FVC; %) determined. Linear mixed models were utilized to estimate relationships between OSRC exposures and lung function 4–6 years after the spill and changes since the prior measurement. Despite suggestive reduced lung function at 1–3 years, at the 4–6-year exam workers with total hydrocarbon (THC) exposure 1–2.99 ppm and ≥3 ppm compared to those with ≤0.29 ppm exhibited higher FEV1 (β: 108 ml, 95% CI: 17, 198) and (β: 118 ml, 95% CI: 5, 232), respectively. Compared with support workers, those in higher exposed jobs displayed greater improvement in FEV1 between visits: cleanup on water (β: 143 ml, 95% CI: 35, 250), operations (β: 132 ml, 95% CI: 30, 234) and response (β: 149 ml, 95% CI: 43, 256). Greater FEV1 improvement was also associated with higher versus the lowest level THC exposure: 1–2.99 ppm (β: 134 ml, 95% CI: 57, 210) and ≥3 ppm (β: 205 ml, 95% CI: 109, 301). Lung function decrements seen shortly after the spill were no longer apparent 4–6 years later, with the greatest improvement among those with the highest exposures

    Modeling magnetospheric fields in the Jupiter system

    Full text link
    The various processes which generate magnetic fields within the Jupiter system are exemplary for a large class of similar processes occurring at other planets in the solar system, but also around extrasolar planets. Jupiter's large internal dynamo magnetic field generates a gigantic magnetosphere, which is strongly rotational driven and possesses large plasma sources located deeply within the magnetosphere. The combination of the latter two effects is the primary reason for Jupiter's main auroral ovals. Jupiter's moon Ganymede is the only known moon with an intrinsic dynamo magnetic field, which generates a mini-magnetosphere located within Jupiter's larger magnetosphere including two auroral ovals. Ganymede's magnetosphere is qualitatively different compared to the one from Jupiter. It possesses no bow shock but develops Alfv\'en wings similar to most of the extrasolar planets which orbit their host stars within 0.1 AU. New numerical models of Jupiter's and Ganymede's magnetospheres presented here provide quantitative insight into the processes that maintain these magnetospheres. Jupiter's magnetospheric field is approximately time-periodic at the locations of Jupiter's moons and induces secondary magnetic fields in electrically conductive layers such as subsurface oceans. In the case of Ganymede, these secondary magnetic fields influence the oscillation of the location of its auroral ovals. Based on dedicated Hubble Space Telescope observations, an analysis of the amplitudes of the auroral oscillations provides evidence that Ganymede harbors a subsurface ocean. Callisto in contrast does not possess a mini-magnetosphere, but still shows a perturbed magnetic field environment. Callisto's ionosphere and atmospheric UV emission is different compared to the other Galilean satellites as it is primarily been generated by solar photons compared to magnetospheric electrons.Comment: Chapter for Book: Planetary Magnetis

    Lung Function in Oil Spill Response Workers 1-3 Years after the Deepwater Horizon Disaster

    Get PDF
    Background: Little is known about the effects of inhalation exposures on lung function among workers involved in the mitigation of oil spills. Our objective was to determine the relationship between oil spill response work and lung function 1-3 years after the Deepwater Horizon (DWH) disaster. Methods: We evaluated spirometry for 7,775 adults living in the Gulf states who either participated in DWH response efforts (workers) or received safety training but were not hired (nonworkers). At an enrollment interview, we collected detailed work histories including information on potential exposure to dispersants and burning oil/gas. We assessed forced expiratory volume in 1 second (FEV 1; mL), forced vital capacity (FVC; mL), and the ratio (FEV 1 /FVC%) for differences by broad job classes and exposure to dispersants or burning oil/gas using multivariable linear and modified Poisson regression. Results: We found no differences between workers and nonworkers. Among workers, we observed a small decrement in FEV 1 (Beta, -71 mL; 95% confidence interval [CI], -127 to -14) in decontamination workers compared with support workers. Workers with high potential exposure to burning oil/gas had reduced lung function compared with unexposed workers: FEV 1 (Beta, -183 mL; 95% CI, -316 to -49) and FEV 1 /FVC (Beta, -1.93%; 95% CI, -3.50 to -0.36), and an elevated risk of having a FEV 1 /FVC in the lowest tertile (prevalence ratio, 1.38; 95% CI, 0.99 to 1.92). Conclusions: While no differences in lung function were found between workers and nonworkers, lung function was reduced among decontamination workers and workers with high exposure to burning oil/gas compared with unexposed workers

    A review of the impacts of degradation threats on soil properties in the UK

    Get PDF
    National governments are becoming increasingly aware of the importance of their soil resources and are shaping strategies accordingly. Implicit in any such strategy is that degradation threats and their potential effect on important soil properties and functions are defined and understood. In this paper, we aimed to review the principal degradation threats on important soil properties in the UK, seeking quantitative data where possible. Soil erosion results in the removal of important topsoil and, with it, nutrients, C and porosity. A decline in soil organic matter principally affects soil biological and microbiological properties, but also impacts on soil physical properties because of the link with soil structure. Soil contamination affects soil chemical properties, affecting nutrient availability and degrading microbial properties, whilst soil compaction degrades the soil pore network. Soil sealing removes the link between the soil and most of the ‘spheres’, significantly affecting hydrological and microbial functions, and soils on re-developed brownfield sites are typically degraded in most soil properties. Having synthesized the literature on the impact on soil properties, we discuss potential subsequent impacts on the important soil functions, including food and fibre production, storage of water and C, support for biodiversity, and protection of cultural and archaeological heritage. Looking forward, we suggest a twin approach of field-based monitoring supported by controlled laboratory experimentation to improve our mechanistic understanding of soils. This would enable us to better predict future impacts of degradation processes, including climate change, on soil properties and functions so that we may manage soil resources sustainably

    Distinct respiratory responses of soils to complex organic substrate are governed predominantly by soil architecture and its microbial community

    Get PDF
    Factors governing the turnover of organic matter (OM) added to soils, including substrate quality, climate, environment and biology, are well known, but their relative importance has been difficult to ascertain due to the interconnected nature of the soil system. This has made their inclusion in mechanistic models of OM turnover or nutrient cycling difficult despite the potential power of these models to unravel complex interactions. Using high temporal-resolution respirometery (6 min measurement intervals), we monitored the respiratory response of 67 soils sampled from across England and Wales over a 5 day period following the addition of a complex organic substrate (green barley powder). Four respiratory response archetypes were observed, characterised by different rates of respiration as well as different time-dependent patterns. We also found that it was possible to predict, with 95% accuracy, which type of respiratory behaviour a soil would exhibit based on certain physical and chemical soil properties combined with the size and phenotypic structure of the microbial community. Bulk density, microbial biomass carbon, water holding capacity and microbial community phenotype were identified as the four most important factors in predicting the soils’ respiratory responses using a Bayesian belief network. These results show that the size and constitution of the microbial community are as important as physico-chemical properties of a soil in governing the respiratory response to OM addition. Such a combination suggests that the 'architecture' of the soil, i.e. the integration of the spatial organisation of the environment and the interactions between the communities living and functioning within the pore networks, is fundamentally important in regulating such processes

    The structural basis of bacterial manganese import

    Get PDF
    Metal ions are essential for all forms of life. In prokaryotes, ATP-binding cassette (ABC) permeases serve as the primary import pathway for many micronutrients including the first-row transition metal manganese. However, the structural features of ionic metal transporting ABC permeases have remained undefined. Here, we present the crystal structure of the manganese transporter PsaBC from Streptococcus pneumoniae in an open-inward conformation. The type II transporter has a tightly closed transmembrane channel due to "extracellular gating" residues that prevent water permeation or ion reflux. Below these residues, the channel contains a hitherto unreported metal coordination site, which is essential for manganese translocation. Mutagenesis of the extracellular gate perturbs manganese uptake, while coordination site mutagenesis abolishes import. These structural features are highly conserved in metal-specific ABC transporters and are represented throughout the kingdoms of life. Collectively, our results define the structure of PsaBC and reveal the features required for divalent cation transport.Stephanie L. Neville, Jennie Sjöhamn, Jacinta A. Watts, Hugo MacDermott-Opeskin, Stephen J. Fairweather, Katherine Ganio, Alex Carey Hulyer, Aaron P. McGrath, Andrew J. Hayes, Tess R. Malcolm, Mark R. Davies, Norimichi Nomura, So Iwata, Megan L. O’Mara, Megan J. Maher, Christopher A. McDevit

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    The historical Greenland Climate Network (GC-Net) curated and augmented level-1 dataset

    Get PDF
    The Greenland Climate Network (GC-Net) consists of 31 automatic weather stations (AWSs) at 30 sites across the Greenland Ice Sheet. The first site was initiated in 1990, and the project has operated almost continuously since 1995 under the leadership of the late Konrad Steffen. The GC-Net AWS measured air temperature, relative humidity, wind speed, atmospheric pressure, downward and reflected shortwave irradiance, net radiation, and ice and firn temperatures. The majority of the GC-Net sites were located in the ice sheet accumulation area (17 AWSs), while 11 AWSs were located in the ablation area, and two sites (three AWSs) were located close to the equilibrium line altitude. Additionally, three AWSs of similar design to the GC-Net AWS were installed by Konrad Steffen's team on the Larsen C ice shelf, Antarctica. After more than 3 decades of operation, the GC-Net AWSs are being decommissioned and replaced by new AWSs operated by the Geological Survey of Denmark and Greenland (GEUS). Therefore, making a reassessment of the historical GC-Net AWS data is necessary. We present a full reprocessing of the historical GC-Net AWS dataset with increased attention to the filtering of erroneous measurements, data correction and derivation of additional variables: continuous surface height, instrument heights, surface albedo, turbulent heat fluxes, and 10 m ice and firn temperatures. This new augmented GC-Net level-1 (L1) AWS dataset is now available at https://doi.org/10.22008/FK2/VVXGUT (Steffen et al., 2023) and will continue to be refined. The processing scripts, latest data and a data user forum are available at https://github.com/GEUS-Glaciology-and-Climate/GC-Net-level-1-data-processing (last access: 30 November 2023). In addition to the AWS data, a comprehensive compilation of valuable metadata is provided: maintenance reports, yearly pictures of the stations and the station positions through time. This unique dataset provides more than 320 station years of high-quality atmospheric data and is available following FAIR (findable, accessible, interoperable, reusable) data and code practices
    corecore