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Abstract 39 

National governments are becoming increasingly aware of the importance of their soil 40 

resources and are shaping strategies accordingly. Implicit in any such strategy is that 41 

degradation threats and their potential effect on important soil properties and functions are 42 

defined and understood. In this paper we aimed to review the principal degradation threats on 43 

important soil properties in the UK, seeking quantitative data where possible. Soil erosion 44 

results in the removal of important topsoil and, with it, nutrients, C and porosity. A decline in 45 

soil organic matter principally affects soil biological and microbiological properties, but also 46 

impacts on soil physical properties because of the link with soil structure. Soil contamination 47 

affects soil chemical properties, affecting nutrient availability and degrading microbial 48 

properties, whilst soil compaction degrades the soil pore network. Soil sealing removes the 49 

link between the soil and most of the ‘spheres’, significantly affecting hydrological and 50 

microbial functions, and soils on re-developed brownfield sites are typically degraded in most 51 

soil properties. Having synthesized the literature on the impact on soil properties, we discuss 52 

potential subsequent impacts on the important soil functions, including food and fibre 53 

production, storage of water and C, support for biodiversity, and protection of cultural and 54 

archaeological heritage. Looking forward, we suggest a twin approach of field-based 55 

monitoring supported by controlled laboratory experimentation to improve our mechanistic 56 

understanding of soils. This would enable us to better predict future impacts of degradation 57 

processes, including climate change, on soil properties and functions so that we may manage 58 

soil resources sustainably. 59 

 60 

Keywords: Soil erosion, soil organic matter, soil contamination, soil compaction, soil 61 

functions, climate change  62 
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Introduction 63 

National governments are becoming increasingly aware of the importance of their soil 64 

resources and have begun to shape policies to recognise this. In the UK, for example, there 65 

have been soil strategies and policy documents in England (HMG, 2009b; HMG, 2011b), 66 

Scotland (Dobbie et al., 2011) and Wales (WAG, 2006). All have a similar central aim, 67 

namely the ambition to manage soils sustainably and tackle potential degradation threats so 68 

that their ability to provide essential services is protected or enhanced. Soil degradation in 69 

England has been estimated to have cost the economy at least £150M - £250M each year 70 

(HMG, 2011b). 71 

Implicit in any such strategy is that the principal degradation threats and their effect on 72 

important soil properties are defined and understood. If this can be achieved then, by 73 

extension, we may better-understand the likely impact on soil functions – the essential 74 

services that we rely on soils to perform – and we can begin to define policies to protect 75 

them. Evidence-gathering is an initial stage in the process of developing and refining policies 76 

(HMG, 2011a).  77 

In this paper we aimed to identify and review the principal degradation threats on important 78 

soil properties in the UK, seeking quantitative data where possible. We summarize the main 79 

findings and discuss the likely subsequent impacts on soil functions and also the potential 80 

impacts of predicted changes in climate in the UK. 81 

 82 

Methodology 83 

Degradation threats 84 

In examining which degradation threats were important in the context of the UK, we 85 

consulted the report of the European Environmental Assessment of Soil for Monitoring 86 

(ENVASSO) project (Huber et al., 2008), which aimed to establish a soil monitoring system 87 
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in support of a proposed European Union-wide Soil Framework Directive (EC, 2006). In the 88 

report of Huber et al. (2008), nine key threats to soil were identified: soil erosion, decline in 89 

soil organic matter (SOM), soil contamination, soil sealing, soil compaction, decline in soil 90 

biodiversity, soil salinisation, landslides and desertification. In addition, the report identified 91 

three further ‘cross-cutting issues’ which exist as threats to soil: climate change, land use 92 

change and brownfield development. Similar threats to soils have been identified in the UK 93 

previously (e.g. SG, 2009; HMG, 2011b). 94 

From this list, we focused on soil erosion, decline in SOM, soil contamination, soil 95 

compaction, soil sealing, and brownfield development, as we believe these to be of the 96 

greatest relevance to soils in the UK. It is our view that the decline in soil biodiversity does 97 

not exist as a specific independent threat to soil, but that instead it arises as a result of some 98 

of the other threats identified. Similarly, land use change imparts some of the other threats 99 

identified on the soil. Therefore these two threats were covered in the context of the other 100 

threats. We review soil salinisation and landslides only briefly, as we consider these to be less 101 

important, and extremely localized in the UK. Desertification is not a threat currently to UK 102 

soils and is not reviewed. Finally we discuss climate change separately in terms of what the 103 

likely impacts might be on degradation threats and soil properties. The degradation threats 104 

considered and brief definitions are given in Table 1. 105 

 106 

Literature review 107 

A literature review of peer-reviewed publications was conducted using the web-based ISI 108 

Web of Knowledge SM search engine (Thomson Reuter, New York, USA), supplemented by 109 

other relevant published evidence (e.g. reports). We took each degradation threat as a search 110 

term in turn with ‘soil’ and ‘UK’ and sought data, predominantly from the 2000-2015 period, 111 

on the impacts on important soil physical, biological and chemical properties in the UK. In 112 
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particular we focused on general properties likely to be of direct relevance for the ability of 113 

the soil to carry out its principal functions, including food and fibre production, water and air 114 

filtration, and biodiversity support. We synthesized the most relevant information in our 115 

review below. 116 

 117 

The impacts of degradation threats on soil properties in the UK 118 

 119 

Soil erosion 120 

Although soil erosion can be natural, current concerns relate to accelerated erosion where the 121 

rate has increased significantly through human activities, and greatly exceeds current 122 

estimates of soil formation (0.3-1.4 Mg ha-1 year-1 in Europe) (Verheijen et al., 2009). Most 123 

erosion is by water, with light-textured soils particularly susceptible (Quinton & Catt, 2004), 124 

although wind erosion has been observed on arable soils in eastern England, albeit it is very 125 

difficult to quantify (Bullock, 1987), and peaty soils can erode at daily rates of up to 5.6 kg 126 

ha-1 when dry (Foulds & Warburton, 2007). 127 

Mean annual erosion rates in England measured directly or interpreted from aerial 128 

photography on mostly arable sites are typically up to 10 Mg ha-1, but can be as high as 66 129 

Mg ha-1 whilst annual tillage erosion in the UK can reach 5 Mg ha-1 (van Oost et al., 2009). 130 

Under grassland, 52% of the 399 upland sites in England and Wales surveyed by McHugh et 131 

al. (2002) in 1999 had suffered erosion and an estimated 89 000 m3 of soil had been lost over 132 

an unspecified time, less than 1% of which was deposited in the same field site. Improved 133 

lowland grasslands typically have lower annual rates of erosion, ranging from 0.5-1.2 Mg ha-134 

1, (Whitmore et al., 2004; Bilotta et al., 2010). 135 

Structural damage of the soil surface, caused by raindrops, running water and deposited 136 

material, reduces infiltration and increases surface runoff (Dexter, 1997; Whitmore et al., 137 
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2004; Pilgrim et al., 2010). The direct loss of soil C by water erosion (Lal, 2003; van Oost et 138 

al., 2007) has been estimated to be 0.20-0.76 Tg annually in England and Wales (Quinton et 139 

al., 2006). Plant nutrients can be lost in eroded topsoil (Pimentel et al., 1995; Quinton et al., 140 

2001; Palmer & Smith, 2013), although few published studies have examined N and P losses 141 

in detail (Kronvang, 1990; Chambers et al., 2000). 142 

 143 

Decline in soil organic matter 144 

In common with other temperate-zone countries, there has been a decline in SOM in some 145 

soils in the UK over a long period, predominantly as a result of changes in land use. 146 

Historically land has changed from native woodland to grazing land, and then on to annual 147 

arable systems. Since the 1940s, the area covered by permanent grassland has reduced and in 148 

arable systems there has been a reduction in the use of manures and an increase in cultivation 149 

depth (Bellamy et al., 2005). These have all served to both reduce organic inputs and increase 150 

decomposition of existing SOM. Topsoil horizons (up to 0.30 m depth) are those most 151 

affected by SOM decline as the topsoil is the main zone affected by land use, although there 152 

is increased awareness of potential impacts of land use on subsoil SOM (e.g. Gregory et al., 153 

2014). SOM contents under arable systems are much lower than those under grass and 154 

woodland in the UK (Chapman et al., 2013; Gregory et al., 2014). The SOM changes as the 155 

soil adjusts to a new equilibrium of plant inputs, which can take several decades (Jenkinson et 156 

al., 2008; Johnston et al., 2009). Occasionally land is taken out of arable cultivation and 157 

SOM can recover, though at a much slower rate (Johnston, 1986; Poulton et al., 2003; Smith 158 

et al., 2007). There is conflicting evidence as to whether SOM and C stocks have declined 159 

significantly in the UK over the last 30 years where there has been no change in land use 160 

(Bellamy et al., 2005; Reynolds et al., 2013; Chapman et al., 2013), and the current estimate 161 

of the total soil organic C stock down to 1 m depth in the whole of the UK is 5260 Tg 162 
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(Bradley et al., 2005; Gregory et al., 2014). Instead there is much evidence as to the effects of 163 

SOM decline on soil properties, particularly physical properties. 164 

Specific decreases in aggregate stability of 10-40% with a 1% decrease in SOM content have 165 

been recorded in the UK and similar locations (Williams, 1971; Tisdall & Oades, 1980; 166 

Tisdall & Oades, 1982; Riley et al., 2008), as well as a decrease in the resilience of soil to 167 

physical stresses, such as compaction (Watts & Dexter, 1997; Gregory et al., 2009). This can 168 

lead to an undesirable domination of coarser clods (Riley et al., 2008), a decrease in friability 169 

(Watts & Dexter, 1998), and a reduction in porosity (Riley et al., 2008). SOM decline can 170 

reduce soil water retention (Kibblewhite et al., 2008; Johnston et al., 2009) by up to 10% for 171 

a difference in SOM content from 7% to 3% (Gregory et al., 2009). Arable soils of low SOM 172 

content are susceptible to slumping when wetted due to aggregate instability leading to lower 173 

infiltration and greater surface runoff (Whitmore et al., 2004). 174 

The quantity and quality of SOM, as the primary food source, largely controls the soil 175 

microbial biomass (Fierer et al., 2009) and biodiversity (Orwin et al., 2006; Wardle et al., 176 

2006). Loss of SOM can reduce the exchange of important nutrients such as N, P and S 177 

(Johnston et al., 2009). SOM loss from 5% to 2% over a 60 year period at Rothamsted 178 

resulted in a 90% decrease in microbial biomass, but no significant effect on microbial 179 

diversity (Hirsch et al., 2009) or substrate utilization (Wu et al., 2012). Lower fungal biomass 180 

(Gregory et al., 2009) and fungal-to-bacterial biomass ratios (Bardgett et al., 1996, 2007) 181 

have been found soils of low SOM content compared with undisturbed and botanically-rich 182 

grassland soils in the UK. 183 

SOM also plays a key role in the ability of soils to buffer the effects of potentially-toxic 184 

substances, in part by chelation and adsorption (Chander & Brookes, 1993; Hund-Rinke & 185 

Kördel, 2003; Griffiths et al., 2005, 2008; Kuan et al., 2007). Loss of SOM can, hence, 186 

release toxic elements (ROTAP, 2009). 187 
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 188 

Soil contamination 189 

Soil contamination may result from point or diffuse sources. Impacts of the latter are hard to 190 

predict as it can be affected by factors such as the weather, and soils far away from the source 191 

may be affected. Contamination mainly affects soil biological and chemical properties, 192 

although some contaminants (e.g. salts) may destabilize soil structure and affect soil physical 193 

properties. 194 

Contamination that decreases soil pH, such as N deposition (NEGTAP, 2001; ROTAP, 195 

2009), reduces nutrient availability, even at moderate levels (pH 5-7), and increases the risk 196 

of nutrient leaching (Pearson & Stewart, 1993; Jefferies & Maron, 1997; Degryse et al., 197 

2007). Soil pH is one of the main determinants of soil biodiversity and functioning (Fierer & 198 

Jackson, 2006; Smolders et al., 2009; Griffiths et al., 2011). Some keystone soil taxa 199 

including Lumbricidae (earthworms), Collembola (springtails), and N-fixing bacteria are 200 

particularly sensitive to metals (Emmett et al., 2010). Contamination can affect the health of 201 

soil invertebrates in general (Spurgeon & Hopkin, 1996). Addition of Cu to UK soils 202 

(equivalent to 500 mg kg-1) decreased both microbial respiration rates by up to 80% initially, 203 

and microbial biomass itself (Griffiths et al., 2001; Kuan et al., 2007; Gregory et al., 2009). 204 

The effects may not be linear (Hirsch et al., 1993; Giller et al., 2009) as different groups 205 

dominate at different points as toxicity changes. Additions of Cu and Zn increase the 206 

metabolic quotient (Rost et al., 2001) which is an indicator of microbial stress (Chander & 207 

Joergensen, 2001; Chander et al., 2002). Metals added in association with sewage sludge may 208 

be more toxic than metals added as inorganic salts (Chaudri et al., 2008). As a result, 209 

contamination can decrease OM mineralization (Giller et al., 1998; Dai et al., 2004; Emmett 210 

et al., 2010), N fixation (McGrath, 1998; Broos, 2004) and the catabolic diversity of soils, 211 

measured by the soil’s ability to degrade a range of compounds (Wenderoth & Reber, 1999; 212 
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Girvan et al., 2005). Urban soils, often have lower biodiversity (Fountain & Hopkin, 2004; 213 

Styers et al., 2010), presumably due to contamination. 214 

 215 

Soil compaction 216 

Compaction is mainly associated with trafficking in arable soils and livestock in grassland 217 

soils. Whereas clay soils are better-able to recover, sandy soils are particularly vulnerable 218 

(Gregory et al., 2009). Subsoil compaction is particularly insidious because it is rarely 219 

detected. Recent reviews have summarized comprehensively the causes, effects (some of 220 

which are discussed below) and management of soil compaction in the UK (Clarke et al., 221 

2007; Batey, 2009). 222 

Soil compaction degrades soil physical quality (Dexter, 1988; Whitmore & Whalley, 2009). 223 

Increases in bulk density (of up to 0.18 Mg m-3, Ball et al., 2008) and soil strength (of up to 3 224 

MPa, Gregory et al., 2007; Whalley et al., 2008), and decreases in friability (by up to 50%, 225 

Watts & Dexter, 1998), soil porosity (by 10-25%, Mooney & Nipattasuk, 2003; Gregory et 226 

al., 2009; Matthews et al., 2010) and water-holding capacity (Gregory et al., 2009) have been 227 

reported in UK soils. Compaction preferentially affects macropores (Breland & Hansen, 228 

1996; Richard et al., 2001) and can change the alignment of pores from vertical to parallel 229 

with respect to the soil surface (Servadio et al., 2005). This affects infiltration rates 230 

(Heathwaite et al., 1990; Kibblewhite et al., 2008; Batey, 2009) and hence increases the risk 231 

of overland flow, flooding and erosion (Dexter, 1988). Decreases in the saturated hydraulic 232 

conductivity of soil by up to three orders of magnitude have been reported (Mooney & 233 

Nipattasuk, 2003; Matthews et al., 2010). Compaction in grassland soils is less severe than in 234 

arable soil (Palmer & Smith, 2013), although it is much less understood (Bilotta et al., 2007). 235 

Compaction may have little effect on microorganisms as they inhabit small pores which are 236 

less affected (Breland & Hansen, 1996; Jensen et al., 1996; Kohler et al., 2005; Shestak & 237 
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Busse, 2005; Gregory et al., 2007). However, microbial functions may be affected. Breland 238 

& Hansen (1996) reported reductions of up to 18% in N mineralization with compaction, 239 

ascribed to increased physical protection of SOM and microbial biomass in the smaller pores 240 

inaccessible to grazing nematodes created by compaction. Denitrification and NH3 241 

volatilization may increase with compaction, causing N loss (Batey & Killham, 1986). Ball et 242 

al. (2008) found N2O emissions increased by up to 4 mg N m-2 hour-1 following compaction – 243 

twice that of the uncompacted control. In contrast, compaction may affect soil 244 

macroorganisms. Reductions in Collembola (Heisler & Kaiser, 1995; Schrader & Lingnau, 245 

1997), Arthropoda (arthropods) (Aritajate et al., 1977a, 1977b), Enchytraeidae (potworms) 246 

(Schrader et al., 1997; Rohrig et al., 1998), and both surface-dwelling (Piearce, 1984; 247 

Radford et al., 2001) and deep-burrowing Lumbricidae species (Rushton, 1986; Kretzschmar, 248 

1991) have been reported. 249 

 250 

Soil sealing 251 

Soil sealing is associated with the main urban areas of the UK under the greatest pressure for 252 

housing and infrastructure. In 2011, 82% of the population of England lived in urban areas 253 

(ONS, 2012, 2013). Whilst there is little direct evidence of the impacts on soil properties in 254 

the UK, general impacts from a European perspective have been discussed (e.g. Huber et al., 255 

2008; Scalenghe & Marsan, 2009; Virto et al., 2015). Sealing interrupts or removes 256 

completely the contact between the soil and other system components such as the biosphere, 257 

atmosphere and hydrosphere (Huber et al., 2008) with significant and irreversible impacts on 258 

the ability of soil to transmit water and gas (Virto et al., 2015). Declines in SOM (Wei et al., 259 

2014) and microbial biomass and respiration (Piotrowska-Dlugosz & Charzyński, 2015) have 260 

also been reported. 261 

 262 
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Brownfield development 263 

The impact from brownfield development on soil properties is wide-ranging as determined by 264 

the specific prior engineering project. In the extreme case where brownfield development 265 

results in a non-green after-use, the soil is removed permanently and hence all soil functions 266 

will be lost. However, common brownfield developments in the UK include the restoration to 267 

a green after-use of mineral workings, landfill sites and underground infrastructure networks. 268 

In these cases, how the soil was removed, stored and reinstated prior to, during and following 269 

the lifetime of the industrial use will have a large impact on the success of the green after-use 270 

and the properties and functions of the soil. 271 

The removal and storage of soil often has deleterious effects on soil physical properties, 272 

including compaction and loss of structure (HMG, 1996). Soil structure can be damaged with 273 

low porosity, up to 15% lower aggregate stability (Malik & Scullion, 1998), and domination 274 

of smaller (<2 mm) aggregates (Edgerton et al., 1995; Gregory & Vickers, 2003, 2007). The 275 

nutrient status of the soil may be reduced due to leaching during storage and waterlogging if 276 

compacted (HMG, 1996). SOM can also be lost (Johnson et al., 1988; Bentham et al., 1992; 277 

Malik & Scullion, 1998; Wick et al., 2009). These effects can persist when the soil is 278 

reinstated. 279 

The high compaction and shearing forces imparted during lifting, moving and replacement of 280 

soil have immediate and significant effects on the biological community (Harris et al., 1989, 281 

1993). The soil microbial biomass can decrease by 50% immediately upon removal (Harris et 282 

al., 1989) and by 95% following storage if conditions become anaerobic (Harris & Birch, 283 

1990). Lumbricidae are severely affected, and their populations may take decades to recover 284 

even after the soil is reinstated. Fungi and complex organisms are disproportionately affected 285 

by engineering operations, because of their physical, multicellular structure. The observed 286 
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slow recovery of microbial biomass in brownfield soils is linked to the reduced soil physical 287 

quality (Edgerton et al., 1995; Harris, 2003).  288 

 289 

Other degradation threats 290 

Salinisation, the excess of water-soluble salts in soils by natural or human-enhanced means 291 

(Huber et al., 2008), is limited to those UK soils most susceptible to seawater flooding, or 292 

naturally-occurring localised acid sulphate soils such as in East Anglia (Dent, 1985; 293 

Kibblewhite et al., 2008). Salts have a deleterious effect on soil structure and often result in a 294 

release of pollutants (Du Laing et al., 2009). Though more commonly associated with 295 

Mediterranean areas in Europe, particularly mountainous areas (e.g. Ferrara et al., 2015; 296 

Virto et al., 2015), landslides do occur in localized areas of the UK (Foster et al., 2013), 297 

including coastal cliffs (Bowman & Take, 2015) and upland areas (Gunn et al., 2013; 298 

Johnson & Warburton, 2015). The result of landslides is often the loss of the entire soil 299 

material and hence all properties and functions from a site. As vulnerable sites tend to be in 300 

the uplands or by the coast, there can be a significant impact on amenity and agricultural uses 301 

(Bowman & Take, 2015). Correspondingly, the soil at the deposition site is buried, severely 302 

impairing its functioning. 303 

 304 

Discussion 305 

 306 

The impacts of degradation threats on soil properties in the UK 307 

From the review above, we see that the main degradation threats to soils in the UK affect a 308 

wide range of properties within the three main types: physical, biological and chemical. Soil 309 

erosion results in the removal of important topsoil and any contained nutrients, C and 310 

porosity. A decline in SOM principally affects soil biological and microbiological properties, 311 
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SOM being the primary food source, but also impacts on soil physical properties because of 312 

the effect of SOM on soil structure development and stabilization. Soil contamination affects 313 

soil chemical properties, affecting nutrient availability and degrading microbial properties, 314 

whilst soil compaction degrades soil physical properties, especially soil porosity. Soil sealing 315 

removes the link between the soil and most of the ‘spheres’ and can significantly affect soil 316 

hydrological and microbial functions, but may not necessarily affect other soil properties. By 317 

contrast, soils on re-developed brownfield sites are typically degraded in physical, chemical 318 

and biological properties. From our review it is apparent that the potential or actual effect of 319 

some degradation threats on soils in the UK are well-documented, including soil erosion, 320 

decline in SOM, soil contamination and soil compaction. By contrast, the impact of soil 321 

sealing and brownfield development on soils in the UK appears to be understood less. These 322 

areas might need to be research priorities in the future if the UK population (particularly in 323 

urban areas) continues to increase. 324 

The spatial arrangement of degradation threats to soils in the UK is complex and beyond the 325 

scope of this review. However we may offer some initial simplistic thoughts. Erosion is 326 

associated with overland flow on wet soils or wind in dry soils. Therefore in the UK upland 327 

soils in the north and west that experience considerable rainfall and arable soils of low 328 

porosity may be more prone to suffer from soil erosion by water whereas light-textured arable 329 

soils may be more prone to wind erosion, such as those in the south and east of the UK. 330 

Intuitively, soils with a greater amount of SOM have more potential to lose SOM than soils 331 

of lesser SOM. As SOM is to a large extent dictated by land use, soils under grassland, semi-332 

natural or natural vegetation may be candidates to experience a loss of SOM, particularly if 333 

the input from vegetation changes in some way. Grassland dominates soils in the west and 334 

north of the UK, whilst the main areas of semi-natural or natural vegetation are in the 335 

uplands. However, it is important to reiterate that there is currently no definitive evidence for 336 
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significant changes to SOM levels in UK soils (Bellamy et al., 2005; Reynolds et al., 2013; 337 

Chapman et al., 2013; Gregory et al., 2014). Although compaction is often perceived to be a 338 

degradation associated exclusively with trafficking of arable soils, grassland soils can become 339 

compacted from the impact of livestock, and hence compaction can potentially affect many 340 

agricultural soils in the UK. The impacts are likely to be more severe in tramlines and where 341 

livestock congregate (e.g. feeding and watering troughs) in arable and grassland systems, 342 

respectively. Soil sealing and brownfield development are primarily urban-based 343 

degradations and hence will mainly threaten soils within and surrounding the main urban 344 

areas in the UK, particularly in the cities in England. Soil contamination could also affect the 345 

same soils close to urban and industrial areas, but other contaminants, particular airborne 346 

ones, could diffuse to affect soils distant from the source. Continued development and 347 

exploitation of soil and land use spatial databases (e.g. Mackney et al., 1983; Proctor et al., 348 

1998; Morton et al., 2011) should help to identify soils at risk from particular degradation 349 

threats. This kind of approach can then be used to review current land management practices 350 

in order to minimize degradation impacts. 351 

 352 

Implications for soil functions in the UK 353 

Having synthesized the literature on the impact of degradation threats on soil properties in the 354 

UK we may then discuss the likely impacts on important soil functions – the tasks or services 355 

we ask of soil. These functions typically include food and fibre production, storage of water 356 

and C, water and air filtration, support for infrastructure, and support for biodiversity, 357 

habitats, cultural and archaeological heritage (HMG, 2011b). We discuss briefly some 358 

potential impacts of changes in soil properties arising from degradation threats on soil 359 

functions. 360 
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Loss of topsoil affects crop yields. A review of 24 studies in the UK found that yields 361 

decreased by 4% per 10 cm depth of soil loss, equivalent to a soil loss of around 100 Mg ha-1 362 

(Bakker et al., 2004). Erosion on lowland grasslands, which ranges from 0.5-1.2 Mg ha-1, can 363 

be important locally for growth and silage quality (Bilotta et al., 2010). Erosion removes soil 364 

habitat space, thus impacting on biodiversity support and water storage functions. Amenity 365 

use is also affected by erosion (Rodway-Dyer & Walling, 2010). 366 

Degradation of soil physical properties, particularly the decrease in porosity from compaction 367 

and the destabilization of structure from loss of SOM, affect a range of soil functions. Water 368 

storage and flood regulation functions are degraded with a loss in porosity (Dexter, 1997; 369 

Whitmore et al., 2004; Pilgrim et al., 2010). Plant growth can decline as a result of 370 

compaction-imposed loss of porosity, particularly if a dense plough pan develops (van den 371 

Akker, 1997). Compaction impairs root penetration (Batey, 2009) and root development 372 

(Whalley et al., 1995). Specific declines in crop yield have been reported in the UK (Douglas 373 

et al., 1992; Gregory et al., 2007), which can be up to 3 Mg ha-1 for each 0.1 Mg m-3 increase 374 

in bulk density (Whalley et al., 1995) or each 1 MPa increase in strength (Whalley et al., 375 

2006, 2008). Gregory et al. (2007) reported yield declines of up to 3 Mg ha-1 in a heavily 376 

compacted loamy soil. Compaction can also increase the susceptibility of a crop to soil-borne 377 

diseases and fungi (Batey, 2009). In arable systems however some compaction is beneficial 378 

to achieve good seed-soil contact (Dexter, 1988) and to lessen the risk of lodging (Scott et al., 379 

2005). 380 

A decline in soil physical quality has implications for biodiversity support. Plant species 381 

differ in their ability to grow in compacted soil (Godefroid & Koedam, 2004a, 2004b) and 382 

compacted grassland soils may be less biodiverse than uncompacted soils (Roovers et al., 383 

2004). Some evidence exists as to a link between compacted soil and a reduction in soil-384 

pupating larvae of Lepidoptera (butterflies and moths) (Roach & Campbell, 1983). Gilroy et 385 
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al. (2008) reported a negative correlation between soil strength and the abundance of 386 

Motacilla flava (yellow wagtail) in eastern England, perhaps related to the effect on soil-387 

dwelling prey. Other British grassland species, including Turdus philomelos (song thrush), 388 

Sturnus vulgaris (starling) and some waders, may be similarly affected (Clarke et al., 2007). 389 

The quality of soil-turf systems for amenity is impaired by compaction and trafficking 390 

(Marjamaki & Pietola, 2007; Han et al., 2008), although compaction is desired in special 391 

cases, such as cricket pitches (Baker et al., 1998). Compaction may affect the preservation of 392 

cultural artefacts and archaeology in the soil (Blum, 1993). 393 

Although the quantitative evidence for critical thresholds is slight (Korschens et al., 1998; 394 

Loveland & Webb, 2003; Reynolds et al., 2007), there is a widely-held belief that soil cannot 395 

function optimally without an adequate level of SOM (van Camp et al., 2004). Often declines 396 

in SOM and structural development are hard to separate. Robinson & Woodrun (2008) 397 

reported an inverse relationship between SOM content and surface runoff due to crusting in 398 

agricultural soils on chalk in southern England. Declines in SOM have been associated with 399 

increased erosion (Fullen, 1991) and clay dispersion (Watts & Dexter; 1998). Other functions 400 

can also be affected. Correlations have been made between SOM and the abundance of 401 

Diptera (flies) and aerially-active Coleoptera (beetles) in arable soils in England (Gilroy et 402 

al., 2008) and Culicoides impunctatus (highland midge) in Scotland (Blackwell et al., 1999). 403 

A link between SOM loss and the release of toxic elements in soils has also been found 404 

(ROTAP, 2009). 405 

Changes in soil chemical properties, chiefly pH arising from agricultural inputs or 406 

contaminants, affect many functions. Metals and metalloids can accumulate in topsoil from 407 

either the atmosphere or the use of fertilizers, agrochemicals, manures or waste materials on 408 

land which, if released in toxic concentrations, particularly under acidifying conditions, can 409 

severely impair plant growth and food quality (Pearson & Stewart, 1993; Blake et al., 1994; 410 
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Blake & Goulding, 2002; Millennium Ecosystem Assessment, 2005; Degryse et al., 2007; 411 

Atkinson et al., 2012). Some metals and metalloids are phytotoxic and decrease yields at high 412 

concentrations (e.g. Zn, Cu, Cr, and As), whereas ‘passage poisons’ affect animal and 413 

humans consuming food with little effect on yields (e.g. Cd, Mo, Se and possibly Co) 414 

(McGrath & Zhao, 2015). The UK has substantial areas that are As-contaminated (Appleton 415 

et al., 2012). Acidification can cause plant nutrient imbalances (Phoenix et al., 2004), 416 

increased risk of nutrient leaching (Pearson & Stewart, 1993; Jefferies & Maron, 1997; 417 

Degryse et al., 2007) and increased susceptibility of plants to stressors, including diseases and 418 

pests (Power et al., 1998; Carroll et al., 1999). Acid grassland can be toxic to grazing. 419 

Above-ground biomass may be significantly reduced near urban areas due, in part, to the 420 

proximity of contaminant sources (Ander et al., 2013). Ground-level O3 may also potentially 421 

reduce grass (Gonzalez et al., 1999) and arable crop yields by up to 15% in the UK, in part by 422 

the effect on the ability of plants to respond to drought and to sequester C (ROTAP, 2009). 423 

Excess salt levels are toxic to most plant species, but the resulting halophytic ecosystems are 424 

often of great biodiversity value however (e.g. salt marsh, Watts et al., 2003). Indeed, soil pH 425 

is one of the main determinants of plant biodiversity (Buneman et al., 2006; Cookson et al., 426 

2006; Rousk et al., 2009). 427 

At a fundamental level, where soil sealing removes the link between soils and the other 428 

‘spheres’, functions such as supporting vegetation growth, C sequestration, filtering water 429 

and air and supporting biodiversity are significantly or irreversibly reduced (Huber et al., 430 

2008; Scalenghe & Marsan, 2009). Also the degradations in soil properties arising from 431 

brownfield development cause problems for re-creating functioning soils. Restoration to a 432 

desired post-operation land use, such as species-rich grassland, may require intervention 433 

(Carrington & Diaz, 2011). However, modern restoration techniques can successfully 434 
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recreate habitats of high nature conservation value (Tarrant et al., 2013), and indeed soils 435 

with poor structure or nutrient status may help in this regard (HMG, 1996). 436 

It is therefore apparent that if potential soil degradation threats are realized, a range of 437 

important soil functions may be affected, through their effects on measured soil properties. 438 

The studies reviewed above largely focus on functions of immediate current economic value 439 

(e.g. crop yields and water resource management), and were often empirical observations 440 

rather than mechanistic studies linked to soil properties. Extrapolation of knowledge between 441 

soil properties and soil functions is challenging as a result (HMG, 2011b) even though similar 442 

processes may be at work. A related issue is the potential or otherwise for soils to be truly 443 

multi-functional. There are obvious trade-offs: agricultural monoculture might be at odds 444 

with supporting biodiversity, for instance. In the future, a more mechanistic understanding of 445 

the response of soil functions to degradation processes, through measured changes in soil 446 

properties, would help in this regard. 447 

It is important to note that degradation processes do not necessarily have irreversible effects 448 

on soil functions. Land management practices can be revised to reduce or even remove the 449 

degradation threat to improve soil properties and functions. Examples in agriculture include 450 

cultivation when the soil is brittle rather than plastic, and reduced tyre pressures on 451 

machinery to reduce compaction (Batey, 2009), and cultivation perpendicular to (rather than 452 

up-and-down) the slope to reduce erosion (Quinton & Catt, 2004). Farmers may also prevent 453 

SOM loss by incorporating residues or adding organic materials. On non-agricultural land, 454 

degradation threats such as contamination, sealing and brownfield site development can 455 

probably only be mitigated by policy. 456 

 457 

The effects of climate change on soils in the UK 458 
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It is predicted that the UK will experience hotter, drier summers and warmer, wetter winters 459 

than currently, with an increased occurrence of low frequency-high magnitude events such as 460 

heat waves and intense storms (HMG, 2009a, 2009b; Lowe et al., 2009). Climate change is 461 

likely to affect all the degradation threats, and hence soil properties. We briefly summarize 462 

some important implications with reference to observations in the literature and modelling. 463 

Whilst it may be possible to look at evidence from regions currently experiencing the kind of 464 

climate predicted for the UK, such soils have likely developed over millennia under stable 465 

conditions and hence may not necessarily be analogous to how UK soils will respond to rapid 466 

climate change. 467 

Soils on the margins of stability are likely to be most vulnerable to drier summers, such as 468 

those in eastern England which already experience low rainfall, or peat soils which can suffer 469 

irreversible shrinkage upon drying. Prolonged drying can increase soil hydrophobicity 470 

(McHale et al., 2005) and strength (Whitmore & Whalley, 2009). Rapid drying can increase 471 

the mobility of cationic metals (Simpson et al., 2010) which can reduce the buffering 472 

capacity (Park et al., 2010). The likely effect on SOM is unknown: warming may increase 473 

microbial activity (Cox et al., 2002; Carney et al., 2007), or net primary productivity (Smith 474 

et al., 2007; Johnston et al., 2009), resulting in either a net loss or gain in soil C, respectively. 475 

Some models predict significant loss of soil C across much of the UK up to 2080 (Smith et 476 

al., 2005). Suseela & Dukes (2013) suggested a seasonality effect on SOM with decreased 477 

respiration during the growing season and increased respiration in the non-growing season. 478 

Global warming is predicted to cause a sea level rise of between 3-9 cm between 2010 and 479 

2030 (Lowe et al., 2009), which will increase the risk of flooding and salinisation in low-480 

lying coastal soils of the UK. 481 

The wet winter experienced in the UK in 2000-2001 provided some insight into future 482 

rainfall patterns (ADAS, 2002). Soils suffered from prolonged waterlogging, rill erosion, 483 
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losses of NO3 (in drainage water), S (in SO4) and P (in sediment), and precipitation of Fe and 484 

Mn (ADAS, 2002). Waterlogging causes anaerobism and has been found to reduce N, P and 485 

K nutrient uptake rates to less than 10% of control soils, and to increase the concentration of 486 

potentially-harmful compounds including C2H4 (up to 6 µL L-1 ) and Mn (up to 0.5 mg kg-1) 487 

(Drew & Sisworo, 1979). McTiernan et al. (2001) reported 70-300% greater losses of 488 

dissolved organic C from seasonally-waterlogged soil compared to drained grassland, 489 

although Scholefield et al. (1993) found increased NO3 leaching in drained soil at the same 490 

site. Unger et al. (2009) found that flooding reduced total microbial biomass, Gram-positive 491 

bacteria and mycorrhizal fungi by up to 50%. Milan (2012) reported lasting effects of high-492 

magnitude flooding in an upland catchment in the UK where soil adjacent to the river was 493 

lost together with its vegetation. The overall increase in flood frequency in the UK may be as 494 

high as 50% at the current 50-year return period in some catchments (Kay et al., 2006). The 495 

full effects of significant flooding in southern England in the winter of 2013-2014 have yet to 496 

be assessed. 497 

Changes in soil properties arising from climate change will affect important soil functions, 498 

particularly food and fibre yields. With increased drying, rainfed agriculture could become 499 

risky for some important crops in the UK such as potato (Daccache et al., 2012). Following 500 

the wet winter in the UK in 2000-2001, yields of winter wheat (12% decline), barley (7.5% 501 

decline), spring oilseed rape crop, sugar beet and potato were significantly reduced (ADAS, 502 

2002). Rounsevell & Brignall (1994) concluded that machinery working days would be 503 

reduced should autumnal precipitation increase in England by 15%, which is entirely 504 

possible. Flooding makes it difficult to get livestock onto the land (Tyson et al., 1992) and 505 

animals grazing floodplains are at risk of being lost in floodwater (Blackwell & Maltby, 506 

2006). Whilst the greater atmospheric CO2 may enhance yields of temperate plants (Long et 507 

al., 2004) it could come at a cost of reduced plant protein content (Cotrufo et al., 1998; 508 
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DaMatta et al., 2010), if N becomes limited in the soil (Gill et al., 2002). Further impacts on 509 

soil functions may be apparent. Increased concentrations of CO2 may reduce plant 510 

transpiration (Korner, 2000) which could reduce the ability of the soil to store additional 511 

rainfall. Substantially reduced flows in wetlands may reduce their water regulatory capacity 512 

(Sutherland et al., 2008). Waterlogging causes reducing conditions in soils which could 513 

impact on buffering and contaminant filtering (Du Laing et al., 2009; Lair et al., 2009). The 514 

impact of climate change on soil biodiversity remains unclear, although it will reflect changes 515 

in general soil conditions and vegetative growth. Resilience in biodiverse habitats at the 516 

larger scale may mask changes at fine scales (Fridley et al., 2011). A link between climate, 517 

shrink-swell cycles in clay soils, and subsidence claims from properties damaged in the UK 518 

has been reported (Harrison et al., 2012), and it is predicted that the magnitude and frequency 519 

of landslides in the UK will increase in the future (Pritchard et al., 2014). There is conflicting 520 

evidence as to whether waterlogging and anaerobism will help to preserve (Caple, 1996; 521 

Raiswell, 2001) or degrade (Douteralo et al., 2010) archaeological materials in soils. 522 

It would appear that soils will need to be carefully managed in the future to minimize any 523 

exacerbating effects of climate change on the range of degradations that they currently 524 

experience. 525 

 526 

Conclusions 527 

With the UK as an example, we have summarized some key data on the impact of 528 

degradation threats on soil properties, and have sought to link changes in soil properties to 529 

important soil functions. The key next stage will be to continue to add to the database with 530 

field-based monitoring of broad changes to soil properties following degradation supported 531 

by controlled laboratory experimentation to improve understanding of the mechanisms 532 

involved. Outputs from such an approach, together with refinement of soil and land use 533 



23 

 

spatial databases, should aid the development of models capable of extrapolating up to the 534 

national scale in order to link soil degradations to soil functions. We may also be able to 535 

predict any effect that climate change is likely to have. Armed with this, we may revise our 536 

policies so that soils are truly managed sustainably. 537 
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Table 1 The eight degradation threats identified as important for soils in the UK. The 1194 

descriptions are those of Huber et al. (2008), unless stated otherwise. 1195 

Degradation threat Brief description 

Soil erosion The accelerated loss of soil as a result of anthropogenic activity 

in excess of accepted rates of natural soil formation. 

Decline in soil organic 

matter 

The negative imbalance between the build-up of soil organic 

matter and rates of decomposition, leading to an overall decline 

in soil organic matter content and/or quality. 

Soil contamination The presence of a substance or agent in the soil as a result of 

human activity emitted from moving sources, from sources 

with a large area, or from many sources (diffuse) (ISO, 2006), 

or where intensive industrial activities, inadequate waste 

disposal, mining, military activities or accidents introduce 

excessive amounts of contaminants (local). 

Soil compaction The densification and distortion of soil by which total and air-

filled porosity are reduced. 

Soil sealing The destruction or covering of soil by buildings, constructions 

and layers or other bodies of artificial material which may be 

very slowly permeable to water (Burghardt et al., 2004). 

Brownfield development The further development of developed land previously used for 

commercial or industrial purposes, including restoration of 

green after-uses. 

Soil salinisation The excessive increase of water-soluble salts in soil through 

natural processes and human interventions. 

Landslides The movement of a mass of rock, debris, artificial fill or soil 
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down a slope under the force of gravity (Cruden & Varnes, 

1996). 

Climate change The large-scale, long-term shift in the planet's weather patterns 

or average temperatures (Met Office, 2015). 
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