49 research outputs found
Recommended from our members
Genomic structural variation: A complex but important driver of human evolution
Structural variants (SVs)-including duplications, deletions, and inversions of DNA-can have significant genomic and functional impacts but are technically difficult to identify and assay compared with single-nucleotide variants. With the aid of new genomic technologies, it has become clear that SVs account for significant differences across and within species. This phenomenon is particularly well-documented for humans and other primates due to the wealth of sequence data available. In great apes, SVs affect a larger number of nucleotides than single-nucleotide variants, with many identified SVs exhibiting population and species specificity. In this review, we highlight the importance of SVs in human evolution by (1) how they have shaped great ape genomes resulting in sensitized regions associated with traits and diseases, (2) their impact on gene functions and regulation, which subsequently has played a role in natural selection, and (3) the role of gene duplications in human brain evolution. We further discuss how to incorporate SVs in research, including the strengths and limitations of various genomic approaches. Finally, we propose future considerations in integrating existing data and biospecimens with the ever-expanding SV compendium propelled by biotechnology advancements
The home literacy environment of school-aged children with autism spectrum disorders
For typically developing (TD) children, the home literacy environment (HLE) impacts reading competence, yet few studies have explored the HLE of children with autism spectrum disorders (ASD). We collected information about the HLE of children aged 7â13 with ASD and their TD peers via a parental questionnaire and examined whether there were any differences in home literacy practices. Subtle group differences emerged. Children with ASD and concomitant language disorder (autism language disorder [ALD]) were engaged in shared reading and reading discussion more frequently than were TD children and children with ASD and age-appropriate language skills (autism language normal [ALN]). However, both ALN and ALD children engaged in shared reading for a shorter duration than their TD peers. Across groups, frequency and duration of independent reading were positively associated with reading ability and attitude. Thus, home literacy practices appear to reflect child characteristics, and parents are well placed to facilitate their children's literacy development through encouragement and scaffolding
Recommended from our members
Activation of the Ventrolateral Preoptic Neurons Projecting to the Perifornical-Hypothalamic Area Promotes Sleep: DREADD Activation in Wild-Type Rats
The ventrolateral preoptic area (VLPO) predominantly contains sleep-active neurons and is involved in sleep regulation. The perifornical-hypothalamic area (PF-HA) is a wake-regulatory region and predominantly contains wake-active neurons. VLPO GABAergic/galaninergic neurons project to the PF-HA. Previously, the specific contribution of VLPO neurons projecting to the PF-HA (VLPO > PF-HAPRJ) in sleep regulation in rats could not be investigated due to the lack of tools that could selectively target these neurons. We determined the contribution of VLPO > PF-HAPRJ neurons in sleep regulation by selectively activating them using designer receptors exclusively activated by designer drugs (DREADDs) in wild-type Fischer-344 rats. We used a combination of two viral vectors to retrogradely deliver the Cre-recombinase gene, specifically, in VLPO > PF-HA neurons, and further express hM3Dq in those neurons to selectively activate them for delineating their specific contributions to sleepâwake functions. Compared to the control, in DREADD rats, clozapine-N-oxide (CNO) significantly increased fos-expression, a marker of neuronal activation, in VLPO > PF-HAPRJ neurons (2% vs. 20%, p < 0.01) during the dark phase. CNO treatment also increased nonREM sleep (27% vs. 40%, p < 0.01) during the first 3 h of the dark phase, when rats are typically awake, and after exposure to the novel environment (55% vs. 65%; p < 0.01), which induces acute arousal during the light phase. These results support a hypothesis that VLPO > PF-HAPRJ neurons constitute a critical component of the hypothalamic sleepâwake regulatory circuitry and promote sleep by suppressing wake-active PF-HA neurons
Sleep and adult neurogenesis:Implications for cognition and mood
The hippocampal dentate gyrus plays a critical role in learning and memory throughout life, in part by the integration of adult born neurons into existing circuits. Neurogenesis in the adult hippocampus is regulated by numerous environmental, physiological and behavioral factors known to affect learning and memory. Sleep is also important for learning and memory. Here we critically examine evidence from correlation, deprivation, and stimulation studies that sleep may be among those factors that regulate hippocampal neurogenesis. There is mixed evidence for correlations between sleep variables and rates of hippocampal cell proliferation across the day, the year and the lifespan. There is modest evidence that periods of increased sleep are associated with increased cell proliferation or survival. There is strong evidence that disruptions of sleep exceeding 24h, by total deprivation, selective REM sleep deprivation, chronic restriction or fragmentation, significantly inhibit cell proliferation and in some cases neurogenesis. The mechanisms by which sleep disruption inhibits neurogenesis are not fully understood. Although sleep disruption procedures are typically at least mildly stressful, elevated adrenal corticosterone secretion is not necessary for this effect. However, procedures that prevent both elevated corticosterone and interleukin 1 signaling have been found to block the effect of sleep deprivation on cell proliferation. This result suggests that sleep loss impairs hippocampal neurogenesis by the presence of wake-dependent factors, rather than by the absence of sleep-specific processes. This would weigh against a hypothesis that regulation of neurogenesis is a function of sleep. Nonetheless, impaired neurogenesis may underlie some of the memory and mood effects associated with acute and chronic sleep disruptions
Sleep and adult neurogenesis:Implications for cognition and mood
The hippocampal dentate gyrus plays a critical role in learning and memory throughout life, in part by the integration of adult born neurons into existing circuits. Neurogenesis in the adult hippocampus is regulated by numerous environmental, physiological and behavioral factors known to affect learning and memory. Sleep is also important for learning and memory. Here we critically examine evidence from correlation, deprivation, and stimulation studies that sleep may be among those factors that regulate hippocampal neurogenesis. There is mixed evidence for correlations between sleep variables and rates of hippocampal cell proliferation across the day, the year and the lifespan. There is modest evidence that periods of increased sleep are associated with increased cell proliferation or survival. There is strong evidence that disruptions of sleep exceeding 24h, by total deprivation, selective REM sleep deprivation, chronic restriction or fragmentation, significantly inhibit cell proliferation and in some cases neurogenesis. The mechanisms by which sleep disruption inhibits neurogenesis are not fully understood. Although sleep disruption procedures are typically at least mildly stressful, elevated adrenal corticosterone secretion is not necessary for this effect. However, procedures that prevent both elevated corticosterone and interleukin 1 signaling have been found to block the effect of sleep deprivation on cell proliferation. This result suggests that sleep loss impairs hippocampal neurogenesis by the presence of wake-dependent factors, rather than by the absence of sleep-specific processes. This would weigh against a hypothesis that regulation of neurogenesis is a function of sleep. Nonetheless, impaired neurogenesis may underlie some of the memory and mood effects associated with acute and chronic sleep disruptions
Recommended from our members
Characteristics of sleep-active neurons in the medullary parafacial zone in rats
Growing evidence supports a role for the medullary parafacial zone in non-rapid eye movement (non-REM) sleep regulation. Cell-body specific lesions of the parafacial zone or disruption of its GABAergic/glycinergic transmission causes suppression of non-REM sleep, whereas, targeted activation of parafacial GABAergic/glycinergic neurons reduce sleep latency and increase non-REM sleep amount, bout duration, and cortical electroencephalogram (EEG) slow-wave activity. Parafacial GABAergic/glycinergic neurons also express sleep-associated c-fos immunoreactivity. Currently, it is not clear if parafacial neurons are non-REM sleep-active and/or REM sleep-active or play a role in the initiation or maintenance of non-REM sleep. We recorded extracellular discharge activity of parafacial neurons across the spontaneous sleep-waking cycle using microwire technique in freely behaving rats. Waking-, non-REM sleep-, and REM sleep-active neuronal groups were segregated by the ratios of their discharge rate changes during non-REM and REM sleep versus waking and non-REM sleep versus REM sleep. Parafacial neurons exhibited heterogeneity in sleep-waking discharge patterns, but 34 of 86 (40%) recorded neurons exhibited increased discharge rate during non-REM sleep compared to waking. These neurons also exhibited increased discharge prior to non-REM sleep onset, similar to median preoptic nucleus (MnPO) and ventrolateral preoptic area (VLPO) sleep-active neurons. However, unlike MnPO and VLPO sleep-active neurons, parafacial neurons were weakly-moderately sleep-active and exhibited a stable rather than decreasing discharge across sustained non-REM sleep episode. We show for the first time that the medullary parafacial zone contains non-REM sleep-active neurons. These neurons are likely functionally important brainstem compliments to the preoptic-hypothalamic sleep-promoting neuronal networks that underlie sleep onset and maintenance