1,889 research outputs found

    Correlation between the optical veiling and accretion properties: A case study of the classical T Tauri star DK Tau

    Full text link
    Classical T Tauri stars (cTTs) accrete from their circumstellar disk. The material falls onto the stellar surface, producing an accretion shock, which generates veiling in a star's spectra. In addition, the shock causes a localized accretion spot at the level of the chromosphere. Our goal is to investigate the accretion, particularly the mass accretion rates (Macc), for the cTTs DK Tau, over two periods of 17 and 29 days, using two different procedures for comparison purposes. The first method relies on the derivation of the accretion luminosity via accretion-powered emission lines. The second compares the variability of the optical veiling with accretion shock models to determine mass accretion rates. We used observations taken in 2010 and 2012 with the ESPaDOnS spectropolarimeter at the CFHT. We find peak values of the veiling (at 550 nm) ranging from 0.2 to 1.3, with a steeper trend across the wavelength range for higher peak values. When using the accretion-powered emission lines, we find mass accretion rate values ranging from log(Macc[Msol/yr]) = -8.20 to log(Macc[Msol/yr]) = -7.40. This agrees with the values found in the literature, as well as the values calculated using the accretion shock models and the veiling. In addition, we identify a power-law correlation between the values of the accretion luminosity and the optical veiling. For the 2010 observations, using the values of the filling factors (which represent the area of the star covered by an accretion spot) derived from the shock models, we infer that the accretion spot was located between +45 degrees and +75 degrees in latitude. We show that both methods of determining the mass accretion rate yield similar results. We also present a helpful means of confirming the accretion luminosity values by measuring the veiling at a single wavelength in the optical

    Motivation as a predictor of outcomes in school-based humanistic counselling

    Get PDF
    Recent years have seen a growth in the provision of counselling within UK secondary schools, and research indicates that it is associated with significant reductions in psychological distress. However, little is known about the moderators and mediators of positive therapeutic benefit. In the field of adult mental health, motivation has been found to be one of the strongest predictors of therapeutic outcomes, and it was hypothesised that this may also be a predictor of outcomes for young people in school-based counselling services. To assess the relationship between young people’s motivation for counselling and its effectiveness within a secondary school setting. Eighty-one young people (12 - 17 years old) who attended school-based humanistic counselling services in Scotland. Clients completed a measure of motivation for counselling at the commencement of their therapeutic work and a measure of psychological wellbeing at the commencement and termination of counselling. Motivation for counselling was not found to be significantly related to outcomes. The results indicate that the association between motivation and outcomes may be weaker in young people as compared with adults. However, a number of design factors may also account for the non-significant findings: insufficient participants, marginal reliability of the motivation measure and social desirability effects

    A Very Intense Neutrino Super Beam Experiment for Leptonic CP Violation Discovery based on the European Spallation Source Linac: A Snowmass 2013 White Paper

    Full text link
    Very intense neutrino beams and large neutrino detectors will be needed in order to enable the discovery of CP violation in the leptonic sector. We propose to use the proton linac of the European Spallation Source currently under construction in Lund, Sweden to deliver, in parallel with the spallation neutron production, a very intense, cost effective and high performance neutrino beam. The baseline program for the European Spallation Source linac is that it will be fully operational at 5 MW average power by 2022, producing 2 GeV 2.86 ms long proton pulses at a rate of 14 Hz. Our proposal is to upgrade the linac to 10 MW average power and 28 Hz, producing 14 pulses/s for neutron production and 14 pulses/s for neutrino production. Furthermore, because of the high current required in the pulsed neutrino horn, the length of the pulses used for neutrino production needs to be compressed to a few μ\mus with the aid of an accumulator ring. A long baseline experiment using this Super Beam and a megaton underground Water Cherenkov detector located in existing mines 300-600 km from Lund will make it possible to discover leptonic CP violation at 5 σ\sigma significance level in up to 50% of the leptonic Dirac CP-violating phase range. This experiment could also determine the neutrino mass hierarchy at a significance level of more than 3 σ\sigma if this issue will not already have been settled by other experiments by then. The mass hierarchy performance could be increased by combining the neutrino beam results with those obtained from atmospheric neutrinos detected by the same large volume detector. This detector will also be used to measure the proton lifetime, detect cosmological neutrinos and neutrinos from supernova explosions. Results on the sensitivity to leptonic CP violation and the neutrino mass hierarchy are presented.Comment: 28 page

    Sequence alignment, mutual information, and dissimilarity measures for constructing phylogenies

    Get PDF
    Existing sequence alignment algorithms use heuristic scoring schemes which cannot be used as objective distance metrics. Therefore one relies on measures like the p- or log-det distances, or makes explicit, and often simplistic, assumptions about sequence evolution. Information theory provides an alternative, in the form of mutual information (MI) which is, in principle, an objective and model independent similarity measure. MI can be estimated by concatenating and zipping sequences, yielding thereby the "normalized compression distance". So far this has produced promising results, but with uncontrolled errors. We describe a simple approach to get robust estimates of MI from global pairwise alignments. Using standard alignment algorithms, this gives for animal mitochondrial DNA estimates that are strikingly close to estimates obtained from the alignment free methods mentioned above. Our main result uses algorithmic (Kolmogorov) information theory, but we show that similar results can also be obtained from Shannon theory. Due to the fact that it is not additive, normalized compression distance is not an optimal metric for phylogenetics, but we propose a simple modification that overcomes the issue of additivity. We test several versions of our MI based distance measures on a large number of randomly chosen quartets and demonstrate that they all perform better than traditional measures like the Kimura or log-det (resp. paralinear) distances. Even a simplified version based on single letter Shannon entropies, which can be easily incorporated in existing software packages, gave superior results throughout the entire animal kingdom. But we see the main virtue of our approach in a more general way. For example, it can also help to judge the relative merits of different alignment algorithms, by estimating the significance of specific alignments.Comment: 19 pages + 16 pages of supplementary materia

    CSI 2264: Accretion process in classical T Tauri stars in the young cluster NGC 2264

    Get PDF
    Context. NGC 2264 is a young stellar cluster (~3 Myr) with hundreds of low-mass accreting stars that allow a detailed analysis of the accretion process taking place in the pre-main sequence. Aims. Our goal is to relate the photometric and spectroscopic variability of classical T Tauri stars to the physical processes acting in the stellar and circumstellar environment, within a few stellar radii from the star. Methods. NGC 2264 was the target of a multiwavelength observational campaign with CoRoT, MOST, Spitzer, and Chandra satellites and photometric and spectroscopic observations from the ground. We classified the CoRoT light curves of accreting systems according to their morphology and compared our classification to several accretion diagnostics and disk parameters. Results. The morphology of the CoRoT light curve reflects the evolution of the accretion process and of the inner disk region. Accretion burst stars present high mass-accretion rates and optically thick inner disks. AA Tau-like systems, whose light curves are dominated by circumstellar dust obscuration, show intermediate mass-accretion rates and are located in the transition of thick to anemic disks. Classical T Tauri stars with spot-like light curves correspond mostly to systems with a low mass-accretion rate and low mid-IR excess. About 30% of the classical T Tauri stars observed in the 2008 and 2011 CoRoT runs changed their light-curve morphology. Transitions from AA Tau-like and spot-like to aperiodic light curves and vice versa were common. The analysis of the Hα emission line variability of 58 accreting stars showed that 8 presented a periodicity that in a few cases was coincident with the photometric period. The blue and red wings of the Hα line profiles often do not correlate with each other, indicating that they are strongly influenced by different physical processes. Classical T Tauri stars have a dynamic stellar and circumstellar environment that can be explained by magnetospheric accretion and outflow models, including variations from stable to unstable accretion regimes on timescales of a few years

    An assessment of the precision and confidence of aquatic eddy correlation measurements

    Get PDF
    The quantification of benthic fluxes with the aquatic eddy correlation (EC) technique is based on simultaneous measurement of the current velocity and a targeted bottom water parameter (e. g., O-2, temperature). High-frequency measurements (64Hz) are performed at a single point above the seafloor using an acoustic Doppler velocimeter (ADV) and a fast-responding sensor. The advantages of aquatic EC technique are that 1) it is noninvasive, 2) it integrates fluxes over a large area, and 3) it accounts for in situ hydrodynamics. The aquatic EC has gained acceptance as a powerful technique; however, an accurate assessment of the errors introduced by the spatial alignment of velocity and water constituent measurements and by their different response times is still needed. Here, this paper discusses uncertainties and biases in the data treatment based on oxygen EC flux measurements in a large-scale flume facility with well-constrained hydrodynamics. These observations are used to review data processing procedures and to recommend improved deployment methods, thus improving the precision, reliability, and confidence of EC measurements. Specifically, this study demonstrates that 1) the alignment of the time series based on maximum cross correlation improved the precision of EC flux estimations; 2) an oxygen sensor with a response time of <0.4 s facilitates accurate EC fluxes estimates in turbulence regimes corresponding to horizontal velocities <11 cm s(-1); and 3) the smallest possible distance (<1 cm) between the oxygen sensor and the ADV's sampling volume is important for accurate EC flux estimates, especially when the flow direction is perpendicular to the sensor's orientation

    CSI 2264 : accretion process in classical T Tauri stars in the young cluster NGC 2264

    Get PDF
    APS and SHPA acknowledge support from CNPq, CAPES and Fapemig. JFG acknowledges support from FCT ref project UID/FIS/04434/2013.Context. NGC 2264 is a young stellar cluster (~3 Myr) with hundreds of low-mass accreting stars that allow a detailed analysis of the accretion process taking place in the pre-main sequence. Aims. Our goal is to relate the photometric and spectroscopic variability of classical T Tauri stars to the physical processes acting in the stellar and circumstellar environment, within a few stellar radii from the star. Methods. NGC 2264 was the target of a multiwavelength observational campaign with CoRoT, MOST, Spitzer, and Chandra satellites and photometric and spectroscopic observations from the ground. We classified the CoRoT light curves of accreting systems according to their morphology and compared our classification to several accretion diagnostics and disk parameters. Results. The morphology of the CoRoT light curve reflects the evolution of the accretion process and of the inner disk region. Accretion burst stars present high mass-accretion rates and optically thick inner disks. AA Tau-like systems, whose light curves are dominated by circumstellar dust obscuration, show intermediate mass-accretion rates and are located in the transition of thick to anemic disks. Classical T Tauri stars with spot-like light curves correspond mostly to systems with a low mass-accretion rate and low mid-IR excess. About 30% of the classical T Tauri stars observed inthe 2008 and 2011 CoRoT runs changed their light-curve morphology.Transitions from AA Tau-like and spot-like to a periodic light curves and vice versa were common. The analysis of the Hα emission line variability of 58 accreting stars showed that 8 presented a periodicity that in a few cases was coincident with the photometric period. The blue and red wings of the Hα line profiles often do not correlate with each other, indicating that they are strongly influenced by different physical processes. Classical T Tauri stars have a dynamic stellar and circumstellar environment that can be explained by magnetospheric accretion and outflow models, including variations from stable to unstable accretion regimes on timescales of a few years.PostprintPeer reviewe

    Precision measurements of the total and partial widths of the psi(2S) charmonium meson with a new complementary-scan technique in antiproton-proton annihilations

    Full text link
    We present new precision measurements of the psi(2S) total and partial widths from excitation curves obtained in antiproton-proton annihilations by Fermilab experiment E835 at the Antiproton Accumulator in the year 2000. A new technique of complementary scans was developed to study narrow resonances with stochastically cooled antiproton beams. The technique relies on precise revolution-frequency and orbit-length measurements, while making the analysis of the excitation curve almost independent of machine lattice parameters. We study the psi(2S) meson through the processes pbar p -> e+ e- and pbar p -> J/psi + X -> e+ e- + X. We measure the width to be Gamma = 290 +- 25(sta) +- 4(sys) keV and the combination of partial widths Gamma_e+e- * Gamma_pbarp / Gamma = 579 +- 38(sta) +- 36(sys) meV, which represent the most precise measurements to date.Comment: 17 pages, 3 figures, 3 tables. Final manuscript accepted for publication in Phys. Lett. B. Parts of the text slightly expanded or rearranged; results are unchange

    A focused telephonic nursing intervention delivers improved adherence to A1c testing

    Get PDF
    Compliance with hemoglobin A1c (A1c) testing is suboptimal despite the clear national recommendations and guidelines established for care of patients with diabetes. Recent studies have demonstrated a relationship between participation in a diabetes disease management (DM) program and improved adherence to A1c testing. A focused intervention study was initiated to investigate the ability of a DM program to drive improvement in A1c testing. A cohort of 36,327 members experienced a statistically significant increase (29%) in A1c testing while participating in the 6-month focused intervention. This finding demonstrated that a focused DM intervention is able to deliver improvement in a clinical process metric critical for managing patients with diabetes, thereby reducing their risk of disease exacerbation

    Electrons in the Young Solar Wind: First Results from the Parker Solar Probe

    Full text link
    The Solar Wind Electrons Alphas and Protons experiment on the Parker Solar Probe (PSP) mission measures the three-dimensional electron velocity distribution function. We derive the parameters of the core, halo, and strahl populations utilizing a combination of fitting to model distributions and numerical integration for 100,000\sim 100,000 electron distributions measured near the Sun on the first two PSP orbits, which reached heliocentric distances as small as 0.17\sim 0.17 AU. As expected, the electron core density and temperature increase with decreasing heliocentric distance, while the ratio of electron thermal pressure to magnetic pressure (βe\beta_e) decreases. These quantities have radial scaling consistent with previous observations farther from the Sun, with superposed variations associated with different solar wind streams. The density in the strahl also increases; however, the density of the halo plateaus and even decreases at perihelion, leading to a large strahl/halo ratio near the Sun. As at greater heliocentric distances, the core has a sunward drift relative to the proton frame, which balances the current carried by the strahl, satisfying the zero-current condition necessary to maintain quasi-neutrality. Many characteristics of the electron distributions near perihelion have trends with solar wind flow speed, βe\beta_e, and/or collisional age. Near the Sun, some trends not clearly seen at 1 AU become apparent, including anti-correlations between wind speed and both electron temperature and heat flux. These trends help us understand the mechanisms that shape the solar wind electron distributions at an early stage of their evolution
    corecore