206 research outputs found
Diethyl pyrrole-2,5-dicarboxylate
The title compound has been obtained in moderate yield by a new and unexpected base-induced ring contraction from a 1,4-thiazine precursor. Its X-ray structure showing hydrogen bonded dimers is compared with those of other crystallographically characterized 2-acylpyrroles.Publisher PDFPeer reviewe
Australian data on the utilisation and duration on treatment of ibrutinib with a proton pump inhibitor in patients with relapsed or refractory chronic lymphocytic leukaemia
In Australia, over half of patients with relapsed/refractory chronic lymphocytic leukaemia treated with ibrutinib use concomitant proton pump inhibitors (PPIs). High gastric pH reduces the bioavailability of some Bruton tyrosine kinase inhibitors. There was no difference in duration on ibrutinib with or without concomitant PPI (unadjusted P = 0.61; adjusted hazard ratio: 1.23, 95% confidence interval: 0.75–2.02, P = 0.411). PPI use does not affect ibrutinib treatment persistence
Thionylimido complexes
An improved route to d-block and main group NSO complexes is presented including the synthesis of the first antimony(V) complexes, (Ar3Sb(NSO)2), and copper examples (CuBipy(PPh3)NSO). The structures of eight complexes are reported. The observed variation in M-N-S bond angles is due to the combination of orbital overlap (ligand-to-metal bonding) and the degree of ionicity of the bonding.Publisher PDFPeer reviewe
Recommended from our members
Expression of SMARCD1 interacts with age in association with asthma control on inhaled corticosteroid therapy.
BackgroundGlobal gene expression levels are known to be highly dependent upon gross demographic features including age, yet identification of age-related genomic indicators has yet to be comprehensively undertaken in a disease and treatment-specific context.MethodsWe used gene expression data from CD4+ lymphocytes in the Asthma BioRepository for Integrative Genomic Exploration (Asthma BRIDGE), an open-access collection of subjects participating in genetic studies of asthma with available gene expression data. Replication population participants were Puerto Rico islanders recruited as part of the ongoing Genes environments & Admixture in Latino Americans (GALA II), who provided nasal brushings for transcript sequencing. The main outcome measure was chronic asthma control as derived by questionnaires. Genomic associations were performed using regression of chronic asthma control score on gene expression with age in years as a covariate, including a multiplicative interaction term for gene expression times age.ResultsThe SMARCD1 gene (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 1) interacted with age to influence chronic asthma control on inhaled corticosteroids, with a doubling of expression leading to an increase of 1.3 units of chronic asthma control per year (95% CI [0.86, 1.74], p = 6 × 10- 9), suggesting worsening asthma control with increasing age. This result replicated in GALA II (p = 3.8 × 10- 8). Cellular assays confirmed the role of SMARCD1 in glucocorticoid response in airway epithelial cells.ConclusionFocusing on age-dependent factors may help identify novel indicators of asthma medication response. Age appears to modulate the effect of SMARCD1 on asthma control with inhaled corticosteroids
Superpulsed low-level laser therapy protects skeletal muscle of mdx mice against damage, inflammation and morphological changes delaying dystrophy progression.
Aim: To evaluate the effects of preventive treatment with low-level laser therapy (LLLT) on progression of dystrophy in mdx mice. Methods: Ten animals were randomly divided into 2 experimental groups treated with superpulsed LLLT (904 nm, 15 mW, 700 Hz, 1 J) or placebo-LLLT at one point overlying the tibialis anterior muscle (bilaterally) 5 times per week for 14 weeks (from 6th to 20th week of age). Morphological changes, creatine kinase (CK) activity and mRNA gene expression were assessed in animals at 20th week of age. Results: Animals treated with LLLT showed very few morphological changes in skeletal muscle, with less atrophy and fibrosis than animals treated with placebo-LLLT. CK was significantly lower (p = 0.0203) in animals treated with LLLT (864.70 U.l−1, SEM 226.10) than placebo (1708.00 U.l−1, SEM 184.60). mRNA gene expression of inflammatory markers was significantly decreased by treatment with LLLT (p<0.05): TNF-α (placebo-control = 0.51 µg/µl [SEM 0.12], - LLLT = 0.048 µg/µl [SEM 0.01]), IL-1β (placebo-control = 2.292 µg/µl [SEM 0.74], - LLLT = 0.12 µg/µl [SEM 0.03]), IL-6 (placebo-control = 3.946 µg/µl [SEM 0.98], - LLLT = 0.854 µg/µl [SEM 0.33]), IL-10 (placebo-control = 1.116 µg/µl [SEM 0.22], - LLLT = 0.352 µg/µl [SEM 0.15]), and COX-2 (placebo-control = 4.984 µg/µl [SEM 1.18], LLLT = 1.470 µg/µl [SEM 0.73]). Conclusion: Irradiation of superpulsed LLLT on successive days five times per week for 14 weeks decreased morphological changes, skeletal muscle damage and inflammation in mdx mice. This indicates that LLLT has potential to decrease progression of Duchenne muscular dystrophy
Metabolite signatures associated with microRNA miR-143-3p serve as drivers of poor lung function trajectories in childhood asthma
Background: Lung function trajectories (LFTs) have been shown to be an important measure of long-term health in asthma. While there is a growing body of metabolomic studies on asthma status and other phenotypes, there are no prospective studies of the relationship between metabolomics and LFTs or their genomic determinants. Methods: We utilized ordinal logistic regression to identify plasma metabolite principal components associated with four previously-published LFTs in children from the Childhood Asthma Management Program (CAMP) (n = 660). The top significant metabolite principal component (PCLF) was evaluated in an independent cross-sectional child cohort, the Genetic Epidemiology of Asthma in Costa Rica Study (GACRS) (n = 1151) and evaluated for association with spirometric measures. Using meta-analysis of CAMP and GACRS, we identified associations between PCLF and microRNA, and SNPs in their target genes. Statistical significance was determined using an false discovery rate-adjusted Q-value. Findings: The top metabolite principal component, PCLF, was significantly associated with better LFTs after multiple-testing correction (Q-value = 0.03). PCLF is composed of the urea cycle, caffeine, corticosteroid, carnitine, and potential microbial (secondary bile acid, tryptophan, linoleate, histidine metabolism) metabolites. Higher levels of PCLF were also associated with increases in lung function measures and decreased circulating neutrophil percentage in both CAMP and GACRS. PCLF was also significantly associated with microRNA miR-143-3p, and SNPs in three miR-143-3p target genes; CCZ1 (P-value = 2.6 × 10−5), SLC8A1 (P-value = 3.9 × 10−5); and TENM4 (P-value = 4.9 × 10−5). Interpretation: This study reveals associations between metabolites, miR-143-3p and LFTs in children with asthma, offering insights into asthma physiology and possible interventions to enhance lung function and long-term health. Funding: Molecular data for CAMP and GACRS via the Trans-Omics in Precision Medicine (TOPMed) program was supported by the National Heart, Lung, and Blood Institute (NHLBI)
Mapping transcription mechanisms from multimodal genomic data
Background
Identification of expression quantitative trait loci (eQTLs) is an emerging area in genomic study. The task requires an integrated analysis of genome-wide single nucleotide polymorphism (SNP) data and gene expression data, raising a new computational challenge due to the tremendous size of data.
Results
We develop a method to identify eQTLs. The method represents eQTLs as information flux between genetic variants and transcripts. We use information theory to simultaneously interrogate SNP and gene expression data, resulting in a Transcriptional Information Map (TIM) which captures the network of transcriptional information that links genetic variations, gene expression and regulatory mechanisms. These maps are able to identify both cis- and trans- regulating eQTLs. The application on a dataset of leukemia patients identifies eQTLs in the regions of the GART, PCP4, DSCAM, and RIPK4 genes that regulate ADAMTS1, a known leukemia correlate.
Conclusions
The information theory approach presented in this paper is able to infer the dependence networks between SNPs and transcripts, which in turn can identify cis- and trans-eQTLs. The application of our method to the leukemia study explains how genetic variants and gene expression are linked to leukemia.National Human Genome Research Institute (U.S.) (R01HG003354)National Institute of Allergy and Infectious Diseases (U.S.) (U19 AI067854-05)National Heart, Lung, and Blood Institute (grant T32 HL007427-28)National Institutes of Health (U.S.) (grant K99 LM009826
Chronic obstructive pulmonary disease and related phenotypes: polygenic risk scores in population-based and case-control cohorts
Background Genetic factors influence chronic obstructive pulmonary disease (COPD) risk, but the individual variants
that have been identified have small effects. We hypothesised that a polygenic risk score using additional variants
would predict COPD and associated phenotypes.
Methods We constructed a polygenic risk score using a genome-wide association study of lung function (FEV1 and
FEV1/forced vital capacity [FVC]) from the UK Biobank and SpiroMeta. We tested this polygenic risk score in nine
cohorts of multiple ethnicities for an association with moderate-to-severe COPD (defined as FEV1/FVC <0·7 and FEV1
<80% of predicted). Associations were tested using logistic regression models, adjusting for age, sex, height, smoking
pack-years, and principal components of genetic ancestry. We assessed predictive performance of models by area
under the curve. In a subset of studies, we also studied quantitative and qualitative CT imaging phenotypes that
reflect parenchymal and airway pathology, and patterns of reduced lung growth.
Findings The polygenic risk score was associated with COPD in European (odds ratio [OR] per SD 1·81
[95% CI 1·74–1·88] and non-European (1·42 [1·34–1·51]) populations. Compared with the first decile, the tenth decile
of the polygenic risk score was associated with COPD, with an OR of 7·99 (6·56–9·72) in European ancestry and
4·83 (3·45–6·77) in non-European ancestry cohorts. The polygenic risk score was superior to previously described
genetic risk scores and, when combined with clinical risk factors (ie, age, sex, and smoking pack-years), showed
improved prediction for COPD compared with a model comprising clinical risk factors alone (AUC 0·80 [0·79–0·81]
vs 0·76 [0·75–0·76]). The polygenic risk score was associated with CT imaging phenotypes, including wall area
percent, quantitative and qualitative measures of emphysema, local histogram emphysema patterns, and destructive
emphysema subtypes. The polygenic risk score was associated with a reduced lung growth pattern.
Interpretation A risk score comprised of genetic variants can identify a small subset of individuals at markedly
increased risk for moderate-to-severe COPD, emphysema subtyp
- …