1,158 research outputs found

    A data-driven method to assess the causes and impact of delay propagation in air transportation systems

    Get PDF
    Air transportation systems are exposed to disruptions, which have significant impact on operations. Airlines operate tight schedules to maximise resource utilisation, however, the lack of sufficient buffers often result in propagating delays. Thus, understanding how likely it is to experience delays, why they keep happening and what is their impact on airline operations are important steps for the management of the disruptions they cause. In this paper, we propose a data-driven method to empirically analyse how delays propagate and their impact on an airline schedule. Our multi-layer network method captures different variables that are influenced by schedule disruption, namely aircraft (tail), crew, passengers and their interfaces. The method is tested on the schedule disruptions of a hub-and-spoke airline where we empirically demonstrate that incorporating information in this multi-layered manner results in a more robust assessment of delay propagation. The method along with the empirical results of this study can support aviation system planners gain additional insights into flight delay propagation patterns and consequently support their resource allocation decisions while improving overall system performance

    The reactivity of lattice nitrogen within the Ni2Mo3N and NiCoMo3N phases

    Get PDF
    In this study, the reactivity of bulk lattice nitrogen within the filled ÎČ-Mn structured Ni2Mo3N phase has been investigated by application of powder neutron diffraction and heterolytic nitrogen isotopic exchange measurements. In contrast to Co3Mo3N, despite the similarity in the N immediate local environment comprising NMo6 octahedra, its reactivity is found to be limited and this lower reactivity was maintained upon the introduction of a significant proportion of cobalt to yield its filled ÎČ-Mn structured CoNiMo3N quaternary nitride counterpart

    Constitutive TRIM22 expression in the respiratory airway confers a pre-existing defence against influenza A virus infection

    Get PDF
    The induction of antiviral effector proteins as part of a homeostatically controlled innate immune response to infection plays a critical role in limiting the propagation and transmission of respiratory pathogens. However, the prolonged induction of this immune response can lead to lung hyperinflammation, tissue damage, and respiratory failure. We hypothesized that tissues exposed to the constant threat of infection may constitutively express higher levels of antiviral effector proteins to reduce the need to activate potentially harmful innate immune defences. By analysing transcriptomic data derived from a range of human tissues, we identify lung tissue to express constitutively higher levels of antiviral effector genes relative to that of other mucosal and non-mucosal tissues. By using primary cell lines and the airways of rhesus macaques, we show the interferon-stimulated antiviral effector protein TRIM22 (TRIpartite Motif 22) to be constitutively expressed in the lung independently of viral infection or innate immune stimulation. These findings contrast with previous reports that have shown TRIM22 expression in laboratory-adapted cell lines to require interferon stimulation. We demonstrate that constitutive levels of TRIM22 are sufficient to inhibit the onset of human and avian influenza A virus (IAV) infection by restricting the onset of viral transcription independently of interferon-mediated innate immune defences. Thus, we identify TRIM22 to confer a pre-existing (intrinsic) intracellular defence against IAV infection in cells derived from the respiratory tract. Our data highlight the importance of tissue-specific and cell-type dependent patterns of pre-existing immune gene expression in the intracellular restriction of IAV from the outset of infection

    Constitutive TRIM22 expression within the respiratory tract identifies tissue-specific and cell-type dependent intrinsic immune barriers to influenza A virus infection

    Get PDF
    We hypothesized that increased expression of antiviral host factors at portals of viral entry may protect exposed tissues from the constant threat of invading pathogens. Comparative transcriptomic analysis identified the broad-acting restriction factor TRIM22 (TRIpartite Motif 22) to be among the most abundantly expressed antiviral host factors in the lung, a major portal of entry for many respiratory pathogens. This was surprising, as TRIM22 is currently considered to be an interferon stimulated gene (ISG) product that confers protection following the activation of pathogen-induced cytokine-mediated innate immune defences. Using human respiratory cell lines and the airways of rhesus macaques, we experimentally confirmed high levels of constitutive TRIM22 expression in the lung. In contrast, TRIM22 expression in many widely used transformed cell lines could only be observed following immune stimulation. Endogenous levels of TRIM22 in non-transformed cells were sufficient to restrict human and avian influenza A virus (IAV) infection by inhibiting the onset of viral transcription independently of cytokine-mediated innate immune defences. Thus, TRIM22 confers a pre-existing (intrinsic) tissue-specific immune barrier to IAV infection in the respiratory tract. We investigated whether the constitutive expression of TRIM22 was a characteristic shared by other ISGs in human lung tissue. Transcriptomic analysis identified a large group of ISGs and IAV immuno-regulatory host factors that were similarly enriched in the lung relative to other mucosal tissues, but whose expression was downregulated in transformed cell-lines. We identify common networks of immune gene downregulation which correlated with enhanced permissivity of transformed cells to initiate IAV replication. Our data highlight the importance of tissue-specific and cell-type dependent patterns of pre-existing immune gene expression in the intrinsic intracellular restriction of IAV; findings highly relevant to the immune regulation of many clinically important respiratory pathogens

    Potential conservation of circadian clock proteins in the phylum Nematoda as revealed by bioinformatic searches

    Get PDF
    Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system.Fil: Romanowski, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; ArgentinaFil: Garavaglia, Matías Javier. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ing.genética y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Goya, María Eugenia. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ghiringhelli, Pablo Daniel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ing.genética y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Golombek, Diego Andres. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Climate change and water resources in arid regions : uncertainty of the baseline time period

    Get PDF
    Recent climate change studies have given a lot of attention to the uncertainty that stems from general circulation models (GCM), greenhouse gas emission scenarios, hydrological models and downscaling approaches. Yet, the uncertainty that stems from the selection of the baseline period has not been studied. Accordingly, the main research question is as follows: What would be the differences and/or the similarities in the evaluation of climate change impacts between the GCM and the delta perturbation scenarios using different baseline periods? This article addresses this issue through comparison of the results of two different baseline periods, investigating the uncertainties in evaluating climate change impact on the hydrological characteristics of arid regions. The Lower Zab River Basin (Northern Iraq) has been selected as a representative case study. The research outcomes show that the considered baseline periods suggest increases and decreases in the temperature and precipitation (P), respectively, over the 2020, 2050 and 2080 periods. The two climatic scenarios are likely to lead to similar reductions in the reservoir mean monthly flows, and subsequently, their maximum discharge is approximately identical. The predicted reduction in the inflow for the 2080–2099 time period fluctuates between 31 and 49% based on SRA1B and SRA2 scenarios, respectively. The delta perturbation scenario permits the sensitivity of the climatic models to be clearly determined compared to the GCM. The former allows for a wide variety of likely climate change scenarios at the regional level and are easier to generate and apply so that they could complement the latter

    The makeshift city: towards a global geography of squatting

    Get PDF
    This paper introduces a set of analytical frames that explore the possibilities of conceiving, researching and writing a global geography of squatting. The paper argues that it is possible to detect, in the most tenuous of urban settings, ways of thinking about and living urban life that have the potential to reanimate the city as a key site of geographical inquiry. The paper develops a modest theory of ‘urban combats’ to account for the complexity and provisionality of squatting as an informal set of practices, as a makeshift approach to housing and as a precarious form of inhabiting the city

    First Neutrino Observations from the Sudbury Neutrino Observatory

    Get PDF
    The first neutrino observations from the Sudbury Neutrino Observatory are presented from preliminary analyses. Based on energy, direction and location, the data in the region of interest appear to be dominated by 8B solar neutrinos, detected by the charged current reaction on deuterium and elastic scattering from electrons, with very little background. Measurements of radioactive backgrounds indicate that the measurement of all active neutrino types via the neutral current reaction on deuterium will be possible with small systematic uncertainties. Quantitative results for the fluxes observed with these reactions will be provided when further calibrations have been completed.Comment: Latex, 7 pages, 10 figures, Invited paper at Neutrino 2000 Conference, Sudbury, Canada, June 16-21, 2000 to be published in the Proceeding
    • 

    corecore