35 research outputs found

    Determinants of Aortic Stiffness: 16-Year Follow-Up of the Whitehall II Study

    Get PDF
    Aortic stiffness is a strong predictor of cardiovascular disease endpoints. Cross-sectional studies have shown associations of various cardiovascular risk factors with aortic pulse wave velocity, a measure of aortic stiffness, but the long-term impact of these factors on aortic stiffness is unknown.In 3,769 men and women from the Whitehall II cohort, a wide range of traditional and novel cardiovascular risk factors were determined at baseline (1991-1993) and aortic pulse wave velocity was measured at follow-up (2007-2009). The prospective associations between each baseline risk factor and aortic pulse wave velocity at follow-up were assessed through sex stratified linear regression analysis adjusted for relevant confounders. Missing data on baseline determinants were imputed using the Multivariate Imputation by Chained Equations.Among men, the strongest predictors were waist circumference, waist-hip ratio, heart rate and interleukin 1 receptor antagonist, and among women, adiponectin, triglycerides, pulse pressure and waist-hip ratio. The impact of 10 centimeter increase in waist circumference on aortic pulse wave velocity was twice as large for men compared with women (men: 0.40 m/s (95%-CI: 0.24;0.56); women: 0.17 m/s (95%-CI: -0.01;0.35)), whereas the opposite was true for the impact of a two-fold increase in adiponectin (men: -0.30 m/s (95%-CI: -0.51;-0.10); women: 0.61 m/s (95%-CI: -0.86;-0.35)).In this large prospective study, central obesity was a strong predictor of aortic stiffness. Additionally, heart rate in men and adiponectin in women predicted aortic pulse wave velocity suggesting that strategies to prevent aortic stiffening should be focused differently by sex

    Influence of the central-to-peripheral arterial stiffness gradient on the timing and amplitude of wave reflections

    Get PDF
    In individuals with compliant aortas, peripheral muscular artery stiffness exceeds central elastic artery stiffness. With ageing, central stiffness increases, with little change in peripheral stiffness, resulting in a reversal of the normal stiffness gradient. This reversal may reduce wave reflection amplitude, due to movement of the major “effective” reflection site further from the heart. To test this, we investigated the relationship among arterial stiffness gradients (normal and reversed), wave reflection amplitude and reflection site distance. Subjects aged ≥50years were recruited from the Anglo-Cardiff Collaborative Trial. Central stiffness was assessed by carotid-femoral pulse wave velocity (cfPWV). In study 1, peripheral PWV was also measured in the arm (carotid-radial, crPWV), and in study 2 in the leg (femoral- dorsalis pedis, fpPWV). Reflection site distance was calculated from cfPWV and reflected wave travel time. Subjects were dichotomized into those with a normal stiffness gradient (peripheral>central PWV), or a reversed gradient (peripheral<central PWV). In study 1, reflection site distance was greater in subjects with a reversed gradient (P<0.01), whereas time to reflection was lower (P<0.001). Both augmentation pressure (P<0.001) and augmentation index (P<0.05) were greater in subjects with a reversed gradient. In study 2, augmentation pressure, augmentation index and reflection site distance were greater in subjects with a reversed stiffness gradient (P<0.01, P<0.05 and P<0.01, respectively), and time to reflection was not different between groups. A reversed arterial stiffness gradient is associated with increased reflection site distance and a paradoxical increase in reflected wave amplitude, and augmentation index

    Aortic stiffness in lone atrial fibrillation: A novel risk factor for arrhythmia recurrence

    Get PDF
    BACKGROUND Recent community-based research has linked aortic stiffness to the development of atrial fibrillation. We posit that aortic stiffness contributes to adverse atrial remodeling leading to the persistence of atrial fibrillation following catheter ablation in lone atrial fibrillation patients, despite the absence of apparent structural heart disease. Here, we aim to evaluate aortic stiffness in lone atrial fibrillation patients and determine its association with arrhythmia re currence following radio-frequency catheter ablation. METHODS We studied 68 consecutive lone atrial fibrillation patients who underwent catheter ablation procedure for atrial fibrillation and 50 healthy age- and sex-matched community controls. We performed radial artery applanation tonometry to obtain central measures of aortic stiffness: pulse pressure, augmentation pressure and augmentation index. Following ablation, arrhythmia recurrence was monitored at months 3, 6, 9, 12 and 6 monthly thereafter. RESULTS Compared to healthy controls, lone atrial fibrillation patients had significantly elevated peripheral pulse pressure, central pulse pressure, augmentation pressure and larger left atrial dimensions (all P<0.05). During a mean follow-up of 2.9±1.4 years, 38 of the 68 lone atrial fibrillation patients had atrial fibrillation recurrence after initial catheter ablation procedure. Neither blood pressure nor aortic stiffness indices differed between patients with and without atrial fibrillation recurrence. However, patients with highest levels (≥75th percentile) of peripheral pulse pressure, central pulse pressure and augmentation pressure had higher atrial fibrillation recurrence rates (all P<0.05). Only central aortic stiffness indices were associated with lower survival free from atrial fibrillation using Kaplan-Meier analysis. CONCLUSION Aortic stiffness is an important risk factor in patients with lone atrial fibrillation and contributes to higher atrial fibrillation recurrence following catheter ablation procedure.Dennis H. Lau, Melissa E. Middeldorp, Anthony G. Brooks, Anand N. Ganesan, Kurt C. Roberts-Thomson, Martin K. Stiles, Darryl P. Leong, Hany S. Abed, Han S. Lim, Christopher X. Wong, Scott R. Willoughby, Glenn D. Young, Jonathan M. Kalman, Walter P. Abhayaratna, Prashanthan Sander

    Elevated serum neutrophil elastase is related to prehypertension and airflow limitation in obese women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neutrophil elastase level/activity is elevated in a variety of diseases such as atherosclerosis, systolic hypertension and obstructive pulmonary disease. It is unknown whether obese individuals with prehypertension also have elevated neutrophil elastase, and if so, whether it has a deleterious effect on pulmonary function. Objectives: To determine neutrophil elastase levels in obese prehypertensive women and investigate correlations with pulmonary function tests.</p> <p>Methods</p> <p>Thirty obese prehypertensive women were compared with 30 obese normotensive subjects and 30 healthy controls. The study groups were matched for age. Measurements: The following were determined: body mass index, waist circumference, blood pressure, lipid profile, high sensitivity C-reactive protein, serum neutrophil elastase, and pulmonary function tests including forced expiratory volume in one second (FEV<sub>1</sub>), forced vital capacity (FVC) and FEV<sub>1</sub>/FVC ratio.</p> <p>Results</p> <p>Serum neutrophil elastase concentration was significantly higher in both prehypertensive (405.8 ± 111.6 ng/ml) and normotensive (336.5 ± 81.5 ng/ml) obese women than in control non-obese women (243.9 ± 23.9 ng/ml); the level was significantly higher in the prehypertensive than the normotensive obese women. FEV1, FVC and FEV1/FVC ratio in both prehypertensive and normotensive obese women were significantly lower than in normal controls, but there was no statistically significant difference between the prehypertensive and normotensive obese women. In prehypertensive obese women, there were significant positive correlations between neutrophil elastase and body mass index, waist circumference, systolic blood pressure, diastolic blood pressure, total cholesterol, triglyceride, low density lipoprotein cholesterol, high sensitivity C-reactive protein and negative correlations with high density lipoprotein cholesterol, FEV1, FVC and FEV1/FVC.</p> <p>Conclusion</p> <p>Neutrophil elastase concentration is elevated in obese prehypertensive women along with an increase in high sensitivity C-reactive protein which may account for dyslipidemia and airflow dysfunction in the present study population.</p

    Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.

    Get PDF
    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP
    corecore