64 research outputs found

    Simulating Flights of Future Launch Vehicles and Spacecraft

    Get PDF
    Marshall Aerospace Vehicle Representation in C (MAVERIC) is a computer program for generic, low-to-high-fidelity simulation of the flight(s) of one or more launch vehicle(s) or spacecraft. MAVERIC is designed to accommodate multi-staged vehicles, powered serially or in parallel, with multiple engines, tanks, and cargo elements. Engines can be of jet or conventional rocket types, using either liquid or solid propellants. MAVERIC includes generic subsystem software models for propulsion systems, mass properties, reaction control systems, aerodynamic properties, guidance systems, and navigation systems. Simulations can be started at points other than liftoff. Also included are guidance-system software models that accommodate the ascent, orbit, coasting, deorbiting, entry, terminal-area-energy-management, approach, and landing phases of flight. Options to use different wind profiles and atmospheres are included. A Monte Carlo capability is provided for modeling dispersions associated with atmospheric effects (including winds), propulsion, navigation, aerodynamics, and mass properties. Failures of engines and other subsystems can be modeled. The program is written in the C programming language, which makes it possible for the program to have high degrees of modularity, reusability, and maintainability, thereby also facilitating modification for modeling new vehicles

    Missile Aerodynamics for Ascent and Re-entry

    Get PDF
    Aerodynamic force and moment equations are developed for 6-DOF missile simulations of both the ascent phase of flight and a tumbling re-entry. The missile coordinate frame (M frame) and a frame parallel to the M frame were used for formulating the aerodynamic equations. The missile configuration chosen as an example is a cylinder with fixed fins and a nose cone. The equations include both the static aerodynamic coefficients and the aerodynamic damping derivatives. The inclusion of aerodynamic damping is essential for simulating a tumbling re-entry. Appended information provides insight into aerodynamic damping

    Paper Session II-A - Space Station Requirements and Transportation Options for Lunar Outpost

    Get PDF
    The 1990\u27s and Space Station Freedom are the next critical, steps in our space endeavors which will be stepping stones for the new century permanent exploration of the moon and the solar system. Freedom Station and transportation requirements for the lunar outpost are partitioned into three phases - the emplacement phase, the consolidation phase, and the utilization phase. The Earth-to-orbit transportation system must ferry vehicles, cargo, crew, and propellant to low Earth orbit (LEO) to support these lunar outpost phase requirements. The lunar transportation system is designed to move crew, science instruments, and support equipment from LEO to the surface of the moon. The lunar transportation system consists of the lunar transfer vehicle (LTV) and the lunar excursion vehicle (LEV). These reusable and highly reliable vehicles provide multiple mission utility through common vehicle usage for cargo and crew delivery. Mission analyses and the lunar payload model have established vehicle design and sizing requirements. A 300-km circular orbit is assumed for the low lunar orbit (LLO) staging point for the lunar surface base. Freedom is used as the LEO transportation node. The LEV is sized to deliver 15t to the lunar surface for the first piloted flight. The LEV can deliver 33t to the lunar surface in the cargo expendable mode. Different transportation system options are designed and sized to compare and show sensitivity of the initial mass required in LEO to determine the most effective and efficient transportation concept

    Identification and analysis of genes expressed in the adult filarial parasitic nematode Dirofilaria immitis

    Get PDF
    The heartworm Dirofilaria immitis is a filarial parasitic nematode infecting dogs and other mammals worldwide causing fatal complications. Here, we present the first large-scale survey of the adult heartworm transcriptome by generation and analysis of 4005 expressed sequence tags, identifying about 1800 genes and expanding the available sequence information for the parasite significantly. Brugia malayi genomic data offered the most valuable information to interpret heartworm genes, with about 70% of D. immitis genes showing significant similarities to the assembly. Comparative genomic analyses revealed both genes common to metazoans or nematodes and genes specific to filarial parasites that may relate to parasitism. Characterization of abundant transcripts suggested important roles for genes involved in energy generation and antioxidant defense in adults. In particular, we proposed that adult heartworm likely adopted an anaerobic electron transfer-based energy generation system distinct from the aerobic pathway utilized by its mammalian host, making it a promising target in developing next generation macrofilaricides and other treatments. Our survey provided novel insights into the D. immitis transcriptome and laid a foundation for further comparative studies on biology, parasitism and evolution within the phylum Nematoda

    Post hoc analyses of surrogate markers of non-alcoholic fatty liver disease (NAFLD) and liver fibrosis in patients with type 2 diabetes in a digitally supported continuous care intervention: An open-label, non-randomised controlled study

    Get PDF
    OBJECTIVE: One year of comprehensive continuous care intervention (CCI) through nutritional ketosis improves glycosylated haemoglobin(HbA1c), body weight and liver enzymes among patients with type 2 diabetes (T2D). Here, we report the effect of the CCI on surrogate scores of non-alcoholic fatty liver disease (NAFLD) and liver fibrosis. METHODS: This was a non-randomised longitudinal study, including adults with T2D who were self-enrolled to the CCI (n=262) or to receive usual care (UC, n=87) during 1 year. An NAFLD liver fat score (N-LFS) >-0.640 defined the presence of fatty liver. An NAFLD fibrosis score (NFS) of >0.675 identified subjects with advanced fibrosis. Changes in N-LFS and NFS at 1 year were the main endpoints. RESULTS: At baseline, NAFLD was present in 95% of patients in the CCI and 90% of patients in the UC. At 1 year, weight loss of ≥5% was achieved in 79% of patients in the CCI versus 19% of patients in UC (p<0.001). N-LFS mean score was reduced in the CCI group (-1.95±0.22, p<0.001), whereas it was not changed in the UC (0.47±0.41, p=0.26) (CCI vs UC, p<0.001). NFS was reduced in the CCI group (-0.65±0.06, p<0.001) compared with UC (0.26±0.11, p=0.02) (p<0.001 between two groups). In the CCI group, the percentage of individuals with a low probability of advanced fibrosis increased from 18% at baseline to 33% at 1 year (p<0.001). CONCLUSIONS: One year of a digitally supported CCI significantly improved surrogates of NAFLD and advanced fibrosis in patients with T2D

    Analysis and functional classification of transcripts from the nematode Meloidogyne incognita

    Get PDF
    BACKGROUND: Plant parasitic nematodes are major pathogens of most crops. Molecular characterization of these species as well as the development of new techniques for control can benefit from genomic approaches. As an entrée to characterizing plant parasitic nematode genomes, we analyzed 5,700 expressed sequence tags (ESTs) from second-stage larvae (L2) of the root-knot nematode Meloidogyne incognita. RESULTS: From these, 1,625 EST clusters were formed and classified by function using the Gene Ontology (GO) hierarchy and the Kyoto KEGG database. L2 larvae, which represent the infective stage of the life cycle before plant invasion, express a diverse array of ligand-binding proteins and abundant cytoskeletal proteins. L2 are structurally similar to Caenorhabditis elegans dauer larva and the presence of transcripts encoding glyoxylate pathway enzymes in the M. incognita clusters suggests that root-knot nematode larvae metabolize lipid stores while in search of a host. Homology to other species was observed in 79% of translated cluster sequences, with the C. elegans genome providing more information than any other source. In addition to identifying putative nematode-specific and Tylenchida-specific genes, sequencing revealed previously uncharacterized horizontal gene transfer candidates in Meloidogyne with high identity to rhizobacterial genes including homologs of nodL acetyltransferase and novel cellulases. CONCLUSIONS: With sequencing from plant parasitic nematodes accelerating, the approaches to transcript characterization described here can be applied to more extensive datasets and also provide a foundation for more complex genome analyses

    The draft genome of the parasitic nematode Trichinella spiralis

    Get PDF
    Genome evolution studies for the phylum Nematoda have been limited by focusing on comparisons involving Caenorhabditis elegans. We report a draft genome sequence of Trichinella spiralis, a food-borne zoonotic parasite, which is the most common cause of human trichinellosis. This parasitic nematode is an extant member of a clade that diverged early in the evolution of the phylum, enabling identification of archetypical genes and molecular signatures exclusive to nematodes. We sequenced the 64-Mb nuclear genome,which is estimated to contain 15,808 protein-coding genes,at ~35-fold coverage using whole-genome shotgun and hierarchal map–assisted sequencing. Comparative genome analyses support intrachromosomal rearrangements across the phylum, disproportionate numbers of protein family deaths over births in parasitic compared to a non-parasitic nematode and a preponderance of gene-loss and -gain events in nematodes relative to Drosophila melanogaster. This genome sequence and the identified pan-phylum characteristics will contribute to genome evolution studies of Nematoda as well as strategies to combat global parasites of humans, food animals and crops
    corecore