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a b s t r a c t

Objective: Sleep disruption is frequently associated with type 2 diabetes (T2D) and hyperglycemia. We
recently reported the effectiveness of a continuous care intervention (CCI) emphasizing nutritional
ketosis for improving HbA1c, body weight and cardiovascular risk factors in T2D patients. The present
study assessed the effect of this CCI approach on sleep quality using a subjective patient-reported sleep
questionnaire.
Methods: A non-randomized, controlled longitudinal study; 262 T2D and 116 prediabetes patients
enrolled in the CCI and 87 separately recruited T2D patients continued usual care (UC) treatment. Pa-
tients completed the Pittsburgh Sleep Quality Index (PSQI) questionnaire. A PSQI score of >5 (scale 0 to
21) was used to identify poor sleepers.
Results: Global sleep quality improved in the CCI T2D (p < 0.001) and prediabetes (p < 0.001) patients
after one year of intervention. Subjective sleep quality (component 1), sleep disturbance (component 5)
and daytime dysfunction (component 7), also showed improvements in the CCI T2D (p < 0.01 for sleep
quality and sleep disturbance; and p < 0.001 for daytime dysfunction) and prediabetes patients
(p < 0.001 for all three components); compared to the UC T2D group after one year. The proportion of
patients with poor sleep quality was significantly reduced after one year of CCI (T2D; from 68.3% at
baseline to 56.5% at one year, p ¼ 0.001 and prediabetes; from 77.9% at baseline to 48.7% at one year,
p < 0.001).
Conclusion: This study demonstrates improved sleep quality as assessed by PSQI in patients with T2D
and prediabetes undergoing CCI including nutritional ketosis but not in T2D patients receiving UC. The
dietary intervention benefited both sleep quality and the severity of T2D symptoms suggesting that
nutritional ketosis improves overall health via multiple mechanisms.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Abbreviations: CCI, continuous care intervention; UC, usual care; T2D, type 2 diabetes; BMI, body mass idex; PSQI, Pittsburgh Sleep Quality Index; OSA, obstructive sleep
apnea; HbA1c, hemoglobin A1c; CPAP, continuous positive airway pressure; AHI, apnea and hypopnea indices; KD, ketogenic diet; REM, rapid eye movement; SWS, slow
wave sleep; BHB, beta-hydroxybutryrate; HOMA-IR, homeostatic model assessment of insulin resistance; hsCRP, high-sensitivity C-reactive protein.
* Corresponding author. Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Division of Sleep Medicine, Harvard Medical School,

MGH Building 149 Room 4140, 149 13th Street, Charlestown, MA 02129, USA.
E-mail address: cvandort@mgh.harvard.edu (C.J. Van Dort).
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1. Introduction

Sleep disruption is associated with obesity and type 2 diabetes
(T2D), yet the bidirectional relationship between sleep and glucose
metabolism is not fully understood. It is linked to increased dia-
betes prevalence in both experimental [1e4] and epidemiological
studies [5e7]. In addition, the severity of hyperglycemia in in-
dividuals with diabetes is associated with poor sleep quality
[8e11], short sleep duration [8,9,12,13] and a greater tendency to
develop sleep disorders including obstructive sleep apnea (OSA)
[14,15]. Both the International Diabetes Federation (IDF) and
American Diabetes Association (ADA) recommend evaluating T2D
patients for sleep breathing problems especially OSA and strongly
encourage treatment when found [16,17].

Weight loss has demonstrated effectiveness to improve sleep
quality, quantity [18,19] and to treat OSA in obese patients. Lifestyle
intervention induced weight loss showed significant reduction in
the apnea and hypopnea indices (AHI) in conjunction with a
decrease in hemoglobin A1c (HbA1c) levels in a randomized
controlled trial of obese OSA patients with comorbid diabetes [20].
Further, weight loss following bariatric surgery is effective at
improving glycemic control and improving AHI in OSA patients
[21]. Intervention studies specifically targeting sleep disruption in
OSA patients without any effect on weight, such as continuous
positive airway pressure (CPAP) treatment, have shown contra-
dictory results for glycemic control. Most CPAP intervention studies
in T2D reported no glycemic benefit from the treatment [22,23], but
one study demonstrated a slight reduction in HbA1c [24]. In
contrast, CPAP studies on prediabetic OSA patients showed im-
provements in insulin sensitivity and glucose tolerance [25,26]. It is
not clear from these studies whether improvement of glycemic
control in conjunction with weight loss improves sleep quality or
vice-versa.

A few studies have investigated the impact of dietary macro-
nutrient composition on sleep duration and quality. Two studies
reported reduction of slowwave sleep (SWS) and elevation of rapid
eye movement (REM) sleep in individuals consuming higher car-
bohydrates (600 g carbohydrate or 80% energy from carbohydrate)
[27,28]. Another study reported the effect of a high carbohydrate
(56% energy from carbohydrate) diet in reducing sleep onset la-
tency when compared to a control diet [29]. Studies investigating
low carbohydrate diets showed the opposite effect; reduced REM
[30], increased REM onset latency [31] and increased SWS [30],
even after 4 h of administering a very low carbohydrate meal [30].
Collectively, these findings signify dietary carbohydrate content as
an important factor in modulating sleep architecture, but extrap-
olation from these studies is limited since they were conducted in
experimentally controlled conditions with small numbers of
healthy individuals in a short time-span and with diets adminis-
tered at specific time points.

Population and intervention-based studies on the overall impact
of carbohydrate intake on sleep indices or sleep quality are very
limited. Katagiri et al., showed reduced sleep quality in individuals
consuming more carbohydrates as measured by a subjective sleep
measure, the Pittsburgh Sleep Quality Index (PSQI) [32]. Studies
investigating the effect of ketogenic diet (KD) in childrenwith sleep
problems showed improvement in daytime sleepiness [33,34] as
well as positive changes in sleep architecture [34,35]. However, in
one of these studies, sleep improvements were suggested to be due
to weight loss rather than the KD [35]. Despite restricted carbo-
hydrate intake concurrent with sleep improvement in these chil-
dren, SWS decreased [35] and REM increased [34,35] which
contradicts studies on carbohydrate intake and sleep architecture
in adults [27,28,30]. Carbohydrate restriction and ketogenic diets
are widely used in the clinical management of obesity and diabetes,

but studies assessing the effect of this diet on sleep are currently
limited. We recently demonstrated a continuous remote care
treatment for T2D including nutritional ketosis significantly
improved glycemic control, weight, and cardiovascular disease risk
factors and reduced diabetes medication use at one year [36e38].

The purpose of this study was to assess the effect of the inter-
vention by time-interval on the global PSQI and its seven compo-
nent scores as well as compared its changes with different
intervention and disease categories. We also assessed the rela-
tionship between changes in the sleep parameters versus key
biochemical parameters, and also investigated the correlation of
pain, circadian rhythm disruption and CPAP usage versus patient-
perceived sleep status. We hypothesized that the global sleep in-
dexes would improve analogously, as improvement in other key
biochemical parameters observed in the intervention.

2. Materials and methods

2.1. Study participants and design

This study is part of a clinical trial (Clinical trials.gov identifier:
NCT02519309) that was approved by the Franciscan Health Lafay-
ette Institutional Review Board. Patients between age 21 and 65
years with either a diagnosis of T2D and a BMI >25 kg/m2 or pre-
diabetes and a BMI >30 kg/m2 were included in this study. Detailed
study design including the inclusion and exclusion criteria were
previously reported [36,37]. Briefly, the trial was an open-label,
non-randomized, controlled, longitudinal study with patients
divided into three groups. The T2D and pre-diabetes patients in the
continuous care intervention (CCI) regimen self-selected either on-
site (CCI-onsite) or web-based (CCI-web) education delivery.
Educational content and medical treatment was the same for both
CCI-onsite and CCI-web. As there were no significant differences in
outcomes including PSQI scores, between educational groups, they
are combined for further analysis [36,37]. Both T2D and prediabetes
CCI patients had access to a mobile health application (app) that
enabled them to communicate and be continuously monitored by a
team of healthcare professionals including a personal health coach
and physician or nurse practitioner. Patients received individual-
ized guidance in achieving nutritional ketosis, typically including
restriction of daily dietary carbohydrates to less than 30 g. Patients
were encouraged to measure and input weight, blood glucose and
blood beta-hydroxybutyrate (BHB) concentrations daily in the app.
These measurements were used by the health care team for
monitoring the patient's condition (weight and glucose) and
assessing carbohydrate restriction (BHB).

Separately recruited usual care (UC) T2D patients were partici-
pants in a local diabetes education program including care by their
primary care physician or endocrinologist and counseling by
registered dietitians; nomodification to their care wasmade for the
study. This group was observed at baseline and one year as refer-
ence for typical disease treatment and progressionwithin the same
geography and health system. UC patients were informed that the
trial had an intervention arm and could participate in that group if
they chose to do so.

2.2. Demographic and clinical variables

Patient demographic and clinical data were collected at base-
line, 70 days and one year. Laboratory measures were assessed at a
Clinical Laboratory Improvement (CLIA) certified laboratory. These
data were initially analyzed to evaluate the safety and effectiveness
of the CCI in improving diabetes status (glycemic control and
medication use), weight and other metabolic factors in T2D [36,37]
and prediabetes patients [38] (unpublished data, manuscript in

M.J. Siegmann et al. / Sleep Medicine 55 (2019) 92e99 93



preparation). Some of the clinical variables e weight, fasting blood
glucose, HbA1c, homeostatic model assessment of insulin resis-
tance (HOMA-IR), BHB and high sensitivity C-reactive protein
(hsCRP) e were included for further analyses in this study. Usual
care T2D patients were not continuously monitored for weight,
blood glucose, or BHB; clinical and laboratory measures were ob-
tained for this group only at baseline and one year.

2.3. Pittsburgh Sleep Quality Index (PSQI)

CCI patients were administered a set of questionnaires,
including the PSQI, during visits at baseline, 70 days and one year;
UC participants completed questionnaires at baseline and one year.
The PSQI consists of 19 validated questions assessing sleep quality
and efficiency [39]. The global PSQI score is calculated from seven
component scores on subjective sleep quality (component 1), sleep
latency (component 2), sleep duration (component 3), habitual
sleep efficiency (component 4), sleep disturbances (component 5),
use of sleep medication (component 6) and daytime dysfunction
(component 7). Each question within the component is scored on a
4-point Likert scale of 0e3, with 3 indicating worse outcomes and
the meanwas calculated for each component score. The sum of the
component score means generates the global PSQI score that
ranges from 0 to 21. Higher global PSQI scores indicate poorer sleep.
A patient with a global PSQI score�5 is considered a “good sleeper”
and >5 is categorized as a “poor sleeper” [40]. Change in the PSQI
score over time was calculated using the formula below:

Delta PSQI ¼ ðPost� intervention PSQI� Baseline PSQIÞ
Baseline PSQI

2.4. Pain, shifted sleep chronotype and CPAP usage

Patients were classified into “pain” and “non-pain” groups based
on their response to pain-related questions in both the PSQI
(question 5i) and a separate questionnaire used to calculate the knee
injury and osteoarthritis outcome score (KOOS). Overall KOOS re-
sults will be reported in a separate publication. Classification of
patients under circadian rhythm “disrupted” and “non-disrupted”
groups was based on the wake time and bedtime responses for PSQI
questions 1 and 3 for compilation of component 4 (sleep efficiency).
Patients were classified as having a shifted wake-up time if they
reported typically waking between 11am and 2am, while those with
bedtimes between 12am and 6pm were bedtime shifted. These
arbitrary bedtime andwake time cut-off ranges were selected based
on evening and night shift workers schedule (second shift e 3pm to
11pm and third shift- 11pm to 7am); which causes these workers to
have sleep patterns that deviate from a normal chronotype. Patients
were also surveyed regarding CPAP usage and discontinuation,
however detailed usage information such as CPAP pressure settings
and usage compliance were not obtained making it difficult to
interpret the patients OSA treatment status.

2.5. Statistical analyses

The questionnaires were administered by research personnel and
completed by patients on paper. Paper questionnaires were scanned
and responses were transcribed in duplicate by an independent
contract data entry firm. The patterns of missing data were assessed
using Little'sMCAR test [41] andwere found to bemissing at random
(MAR). Missing data were imputed by Multivariate Imputation by
Chained Equations (MICE) [42], and Intent to treat (ITT) analyses
were performed. Normality of the global PSQI and component scores

was evaluated using Lilliefors test. Even after transformation, the
data failed the normality test (ie therewas a skew toward lower PSQI
scores and a long tail of higher scores) (Supplemental Fig. 1AeC);
therefore, nonparametric tests were used for analyses of PSQI scores.
Results from continuous variables were expressed as
mean ± standard deviation. Comparisons between groups were
performed using the KruskaleWallis test, and comparisons within
groups were performed using the Wilcoxon Sign Rank test. Tukey's
honest significant difference test was used to analyze pairwise dif-
ferences among significant results from omnibus tests. McNemar's
test was used for assessing statistical significance of transitioning
between ‘good’ and ‘poor’ sleeper among the CCI and UC cohorts.

Adjusted Pearson's and Spearman correlations were calculated
between changes from baseline in global PSQI and changes in
metabolic-parameters. Adjusted correlations were performed
while controlling for age, gender and BMI at baseline. All partici-
pants in the CCI group were stratified by sleep improvement status
based on their baseline and one year global PSQI scores. Patients
that were initially considered “poor sleepers” with a baseline PSQI
>5 but whose score after one year decreased to at or below the
threshold of 5 were classified as improved. Those patients who
were considered “good sleepers” at both baseline and one year
were classified as maintained. Finally, those patients whose 1 year
PSQI score was >5 (regardless of their baseline score) were classi-
fied as not improved. Stepwise analyses of covariance (ANCOVA)
were performed between the three different CCI sleep status
groups at one year with the change of the glucose-related, ketone
and inflammatory markers, while controlling by age, gender and
years living with diabetes. Statistical tests were performed with
MATLAB R2017b using the Statistics and Machine Learning Toolbox
[43] and the R statistical program version 3.5.0 [44].

3. Results

3.1. Baseline participant characteristics

Details on the recruitment and extensive baseline characteris-
tics of the CCI and UC T2D patients were previously published
[36,37]. The demographic, glycemic, inflammatory and sleep
baseline characteristics of the participants that were included for
assessments of sleep are presented in Table 1. One-hundred forty-
three (54.6%) CCI T2D, 61 (54%) CCI prediabetes, and 53 (62.3%) UC
T2D patients completed the PSQI at all expected time points. The
number of patients who completed the trial at one year were
slightly higher than those who completed the PSQI questionnaires.
Some of the patients completed the study period and laboratory
analysis but were unable to attend the clinic for their 70-days and
one-year follow-up visits, where they are required to complete
their corresponding questionnaires. The proportion of missing PSQI
data were similar across the three groups with 77.61% of CCI T2D,
79.06% of CCI prediabetes and 79.24% of UC T2D completed the PSQI
in all expected time points. There were no significant differences
between completers and non-completers on baseline characteris-
tics for either group at one year of the intervention (Supplemental
Table 1). The global PSQI and component scores did not differ
significantly among the groups (CCI T2D, CCI prediabetes and UC
T2D) at baseline. The proportion of participants with overall poor
sleep quality was higher in the CCI prediabetes group (77.9%)
compared to the CCI T2D (68.3%) and UC T2D (68.2%) groups.

3.2. Effect of intervention on sleep

3.2.1. Global PSQI and component scores
Overall sleep quality as assessed by the global PSQI score,

improved in CCI T2D (median change from 7 to 6; p < 0.001) and
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prediabetes (median change from 7 to 5; p < 0.001) groups after
one year of the intervention (Fig. 1). No significant change in the
global PSQI scorewas observed in UC T2D (median change from 7 to
8, p ¼ 0.245). At one year, global PSQI scores in the CCI T2D
(p < 0.001) and prediabetes (p < 0.01) were significantly lower than
in the UC T2D, whereas no differences were observed at baseline
(Supplementary Fig. 2A). Among patients characterized as poor
sleepers at baseline (global PSQI>5), one year global PSQI scorewas
lower in the CCI T2D (p < 0.001) and prediabetes (p < 0.001) than in
the UC T2D (Supplementary Fig. 2B). Greater reduction in the global
PSQI scorewas observed in CCI T2D (median change of�1, p < 0.01)

and CCI prediabetes groups (median change of �2, p < 0.001)
compared to the UC T2D group (Supplementary Fig. 3). Further
assessment of the PSQI component scores revealed three of the
seven components showed significant change at one year for CCI
T2D and prediabetes groups. Subjective sleep quality (p < 0.01 CCI
T2D; p < 0.001 CCI prediabetes), sleep disturbance (p < 0.01 CCI
T2D; p< 0.001 CCI prediabetes) and daytime dysfunction (p < 0.001
CCI T2D; p < 0.001 CCI prediabetes) scores were lower in the CCI
T2D and prediabetes patients compared to the UC T2D group at one
year (Fig. 2 AeC).

3.2.2. Resolution of poor sleep quality
There were 179 (68.3%) T2D and 88 (77.9%) prediabetes patients

categorized as “poor sleepers” in the CCI at baseline. The pro-
portions of “poor sleepers” in the CCI were reduced after one year of
the intervention, with 56.5% of T2D (p ¼ 0.001) and 48.7%
(p < 0.001) of prediabetes patients categorized as “poor sleepers” at
one year. In the UC cohort, the proportion of patients categorized as
“poor sleepers” did not change after one year (68.2% at baseline to
69.4% at one year).

3.2.3. Association within the CCI group between changes in global
PSQI with metabolic and inflammatory markers

Table 2 shows correlations between changes in the global PSQI
score with changes in glucose-related, ketone and inflammatory
markers in the CCI. In the prediabetes group, changes in fasting
glucose (r¼ 0.23, p¼ 0.02) and HOMA-IR (r¼ 0.32, p < 0.001) were
correlated to changes in PSQI scores after controlling for baseline
age, sex and weight. Increased ketone concentrations in the pre-
diabetes participants were also associated with reduction of global
PSQI scores (r ¼ �0.242, p ¼ 0.01). These correlations observed in
the prediabetes group were not present in the CCI T2D group and
changes in the HbA1c and hsCRP did not correlate with changes in
global PSQI scores in either group. Change in mean weight
(p ¼ 0.04) and HOMA-IR (p ¼ 0.01) were the only variables inde-
pendently and significantly associated between the three different
sleep status (improved, maintained and not improved sleep status)
at one year of the intervention. No statistically significant differ-
ences were found in weight loss changes between patients with

Table 1
Baseline characteristics of participants included in the study. Baseline data were calculated using intent-to-treat (ITT) data.

Patient Cohorts CCI Type 2 Diabetes CCI Prediabetes UC Type 2 Diabetes

Starters, Completers, PSQI Available (n) 262, 218, 143 116, 113, 61 87, 78, 53
mean (S.D.) mean (S.D.) mean (S.D.)

Age (years) 53.8 (±8.4) 51.9 (±9.4) 52.7 (±9.3)
Male/female (ratio) 87/175 (1:2) 29/84 (1:3) 35/50 (2:3)
Body weight (kg) 116.4 (±26.1) 109.9 (±23.6) 108.3 (±25.1)
BMI (kg/m2) 40.4 (±8.9) 38.8 (±7.1) 38.2 (±9.1)
Fasting glucose (mg/dL) 160.78 (±61.32) 109.58 (±15.20)* 157.08 (±72.48)
HbA1c (%) 7.60 (±1.50) 5.91 (±0.24)* 7.67 (±1.77)
HOMA-IR 11.8 (±13.1) 7.1 (±7.4)* 13.7 (±17.8)
high sensitivity C-reactive protein (nmol/L) 9.31 (±19.31) 7.46 (±7.51) 9.34 (±9.10)
Beta-hydroxybutyrate (mmol/L) 0.17 (±0.15) 0.14 (±0.13) 0.15 (±0.12)
Global PSQI Score 7.72 (±3.72) 7.96 (±3.43) 7.92 (±3.85)
Subjective sleep quality 1.18 (±0.75) 1.22 (±0.73) 1.25 (±0.79)
Sleep latency 1.09 (±0.93) 1.33 (±0.958) 1.05 (±0.89)
Sleep duration 1.23 (±0.92) 1.27 (±0.96) 1.14 (±0.94)
Habitual sleep efficiency 0.68 (±0.99) 0.61 (±0.89) 0.71 (±1.04)
Sleep disturbances 1.64 (±0.63) 1.66 (±0.68) 1.75 (±0.74)
Use of sleep medication 0.69 (±1.16) 0.66 (±1.11) 0.85 (±1.26)
Daytime dysfunction 1.22 (±0.77) 1.21 (±0.76) 1.17 (±0.86)
Poor sleepers N (%) 179 (68.3) 88 (77.9) 58 (68.2)
Good sleepers N (%) 83 (31.7) 25 (22.1) 27 (31.8)

Note. Subjective sleep quality, component 1; sleep latency, component 2; sleep duration, component 3; habitual sleep efficiency, component 4; sleep disturbances, component
5; use of sleep medication, component 6, and daytime dysfunction, component 7.
*p-value <0.001.

Fig. 1. Distribution of global PSQI scores at baseline and 365 days in CCI T2D, CCI PreD
and UC T2D. Global PSQI score was significantly reduced in the CCI T2D and CCI PreD
groups but not in the UC T2D group after 365 days. Boxplot descriptors (Figs. 1 and 2;
Supplementary Figs. 3 and 4) Horizontal line within the box indicates median; upper
and lower boundaries of the box represent the 25th and 75th percentiles; whiskers of
the box indicate the range and “+++” signs represent outlier values. ** p-value <0.01;
*** p-value <0.001.
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improved, maintained and not improved sleep status. Patients who
maintained sleep showed highest reductions of HOMA-IR
(�6.94 ± 0.86), with statistically significant difference than those
who did not improve sleep, after one year of the intervention
(p ¼ 0.02). Improvements in HOMA-IR among patients in the
improved sleep (�4.17 ± 0.86) and not improved sleep status
(�4.24 ± 0.55) did not differ significantly.

3.3. Effect of persistent pain on sleep improvement

Wefurtherassessed theeffect ofpainon sleep improvement in the
CCI by classifying the patient's pain status using response retrieved
from questions specifically related to pain in the sleep and knee
(KOOS) questionnaires. As illustrated in Supplementary Fig. 4, pa-
tientswithpainhadhigherglobal PSQIscores, indicatingpoorer sleep,
compared to those categorized under “non-pain” group at all three
time points. Both patients in the “non-pain” (Supplementary Fig. 5A,
p < 0.001). and “pain” group (Supplementary Fig. 5B, p < 0.01) had
reductions in their global PSQI score at 70 days and one year.

3.4. Effect of shifted sleep chronotype on sleep improvement

We also assessed the effect of shifted sleep chronotype on the
global PSQI score improvement. Patients were classified as having
shifted sleep chronotype based on their self-reported wake-up
times and bedtimes as defined in the methods. There were 18, 27,
and 96 patients in the CCI cohort classified as both wake-up time
and bedtime shifted, wake-up time shifted only or bedtime shifted
only respectively. Patients with shifted bedtimes, had reduced
global PSQI scores (p < 0.01), as did those with normal chronotype
(p < 0.001) (Supplementary Fig. 6A and B). However, those patients
with shifted wake-up times (Supplementary figures 6C) did not
show a change in their global PSQI score after one year of the
intervention. Those with both shifted wake-up times and bedtimes

also did not show a change in their global PSQI score after one year
of the intervention.

3.5. Effect of CPAP usage on sleep improvement

At baseline, therewere a total of 140 participants in both CCI and
UC treatment groups with CPAP equipment prescribed for sleep.
Among CPAP users, 91 were in the CCI T2D group, 31 in the CCI
prediabetes and 18 in the UC T2D group. Fifteen (13 CCI T2D and
two UC T2D) of the 140 participants discontinued using CPAP at one
year. Only six (46%) of the 13 CCI T2D participants discontinued due
to patient-reported improvement in sleep quality from the CCI and
reduction of weight; the remaining seven reported dis-
continuation due to discomfort or personal choice. Global PSQI
scores among the CPAP users at baseline and one year did not show
a significantly different distribution pattern than what was
observed in the full cohort of participants.

4. Discussion

This study is one of the first designed to assess the effect of
carbohydrate restriction and nutritional ketosis on sleep quality in
individuals with hyperglycemia and insulin resistance. Improved
patient-reported sleep quality as assessed by global PSQI suggests
that CCI including nutritional ketosis benefited sleep quality in both
patients with T2D and prediabetes. The proportion of patients
categorized as “poor sleepers” at one year was significantly reduced
in the CCI groups but not in the UC group. Furthermore, these re-
sults demonstrate that the sleep quality improvement observed in
the whole intervention population was due in part to 17% of
baseline “poor sleepers” being reclassified as “good sleepers” at one
year. Our results are consistent with previous findings that showed
improved overall sleep quality in children consuming ketogenic
diets [33,34].

Fig. 2. Distribution of PSQI components subjective sleep quality, sleep disturbances and daytime dysfunction in CCI T2D, CCI PreD and UC T2D groups at three different timepoints
(0, 70 and 365 days). Subjective sleep quality (A), sleep disturbances (B), and daytime dysfunction (C) were significantly lower in the CCI T2D and CCI PreD groups when compared
to UC T2D group at 365 days. Boxplot descriptors (Figs. 1 and 2; Supplementary Figs. 3 and 4) Horizontal line within the box indicates median; upper and lower boundaries of the
box represent the 25th and 75th percentiles; whiskers of the box indicate the range and “þþþ” signs represent outlier values.** p-value <0.01; *** p-value <0.001.

Table 2
Correlation analyses between change in the global PSQI score and change in metabolic parameters after one year of CCI.

Variable CCI T2D Cohort N ¼ 262 CCI Prediabetes Cohort N ¼ 113

rho P value* Adjusted r P valueþ rho P value* Adjusted r P valueþ

D Fasting glucose (mg/dl) 0.032 0.60 0.008 0.90 0.240 0.01 0.226 0.018
D HbA1c (%) �0.037 0.55 �0.049 0.44 �0.024 0.80 �0.032 0.74
D HOMA-IR �0.060 0.34 �0.069 0.27 0.314 0.0008 0.323 0.0006
D BHB �0.003 0.96 �0.044 0.49 �0.297 0.002 �0.242 0.011
D hsCRP �0.067 0.29 �0.008 0.90 �0.022 0.82 �0.032 0.74

*Spearman and þAdjusted Pearson's correlations. Adjustments while controlling for age, sex and baseline weight.
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Improvement in the global PSQI score of patients undergoing
the CCI was mainly due to significant changes in three PSQI com-
ponents: subjective sleep quality, sleep disturbance and daytime
dysfunction. Both objective and subjective sleep quality impair-
ment are frequently reported in diabetes patients and positively
associated with severity of hyperglycemia [8e11]. Likewise, corre-
lation between poor sleep quality and increased carbohydrate
intake [32] has also been previously reported. These observed
patterns of association between sleep quality with hyperglycemia
and carbohydrate intake may explain why this carbohydrate re-
striction intervention improved subjective sleep quality. The sleep
disturbance component of the global PSQI score is associated with
poor glycemic control among T2D patients [45]. One study reported
a significant correlation between sleep disturbance and HbA1c
level [46]. Night time sleep disturbance in T2D patients can be
related to a wide range of conditions such as nocturnal polyuria,
pain, and breathing problems, especially in those with OSA. In our
study, we also showed that patients encountering persistent pain,
including knee pain, had a higher median global PSQI score, while
one year of the intervention effectively improved global PSQI scores
in these patients despite the persistence of reported pain in some
patients. It is possible that improvement in the sleep disturbance of
the CCI patients contributed to the glycemic control improvement
in these patients. The effectiveness of the intervention in improving
sleep in those with pain, further emphasizes its' applicability in
alleviating sleep disturbance.

Furthermore, there was a significant improvement in the day-
time dysfunction component of the global PSQI score in the CCI
group. Excessive daytime sleepiness and dysfunction are reported
commonly in T2D [47,48], and weight loss through bariatric surgery
has a positive resolving effect on daytime dysfunction and sleepi-
ness [49,50]. In the present investigation, the majority of CCI pa-
tients achieved weight loss of �10%, which could have contributed
to the significant improvement observed in daytime function. In
addition, we also evaluated the effect of the intervention on a
subcohort of patients with a self-reported pattern of shifted non-
standard bedtimes and wake-up times that were not aligned to
the light dark cycle, which likely affects daytime functioning.
Circadian rhythm disruption is frequently associated with meta-
bolic alterations, especially in an insulin resistant state [51,52].
While patients with a normal sleep chronotype benefited the most,
the intervention also improved the sleep of patients with time
shifted bedtimes. A similar advantage of the intervention was not
observed in patients with shifted wake-up times, though this may
be due to the limited number of patients in this subgroup (n ¼ 27).

The improvement in the global PSQI score observed in CCI pa-
tients occurred concurrently with weight reduction and glycemic
control improvement [36,37]. Martin et al., [53] reported a direct
correlation between degree of weight loss and global PSQI score
improvement in healthy nonobese adults receiving an energy
restricted diet, while Chaput et al., [54] reported an improvement
in global PSQI score following the initial 5-kg weight loss, but no
additional improvement with subsequent weight loss. A study us-
ing a ketogenic diet in children alleviated abnormal sleep archi-
tecture; however, weight loss was suggested as the main
determinant of improved sleep [35]. These studies collectively
imply a direct association between weight loss and improved PSQI
score. Likewise, long-term maintenance of weight loss was asso-
ciated with better sleep quality and quantity [18] while the degree
of weight loss reduction is directly correlated with OSA improve-
ment [19]. Alternately, some studies also demonstrate the efficacy
of anti-glycemic medications for improving PSQI score concurrent
with improved glycemic control [55]. This study identified associ-
ations between HOMA-IR and weight reductions with stratification
of patients' sleep status in the full CCI cohort even though there

were no significant differences inweight loss and insulin resistance
reduction levels between those who had improved sleep and those
who did not. Patients with good sleep quality at the beginning of
the intervention benefited the most in reducing insulin resistance.
Improvement in fasting glucose and HOMA-IR were only positively
associated with improved PSQI score in prediabetes patients.

It is not clear if nutritional ketosis achieved by substantial car-
bohydrate restriction augmented the effect of the intervention on
sleep or if weight loss and/or improved glycemic control generated
from the intervention contributed to sleep quality improvements.
We showed a significant correlation between blood beta-
hydroxybutryrate (BHB) levels and PSQI improvement in the pre-
diabetes cohort. While the effect of and mechanism of BHB in sleep
are not clear, a positive correlation between blood BHB levels and
carbon dioxide (CO2) response was previously reported in patients
with obesity related hypoventilation syndrome that had reduced
CO2 response [56]. A continuous state of ketosis through carbohy-
drate restriction and fat intake also induces the postprandial
release of a satiety hormone, cholecystokinin (CCK) [30,57,58].
When administered in rats, CCK was shown to promote slow wave
activity and NREM sleep [59]. CCK was also shown to induce sleep
when administered in diabetic rats [60]. Therefore, it is possible
that one mechanism of improved sleep with a ketogenic diet that
increases BHB levels is through CCK induction.

There are several limitations of our study. The study was
designedmainly to assess the impact of the CCI on glycemic control,
medication use, weight, and cardiovascular disease risk factors.
Patient-reported outcomes for quality of life measures including
sleep were included as secondary endpoints. It is difficult to
determine the causality among the intervention, related to
improvement in primary outcomes and improvement in sleep from
this study. A major limitation of this study is the use of subjective
sleep measures as self-reported sleep assessment is subject to
limited self-knowledge of sleep behavior and inconsistency in
reporting. Changes in architecture were not included in the study.
Therefore, future studies that use randomized controlled trial de-
signs and objective sleep measures are needed to confirm our re-
sults. In addition, patients with an established diagnosis of a sleep
disorder such as OSA were not separated in the analysis since
complete records of their CPAP usage were not collected in the
questionnaire. Patient compliance with CPAP usage is essential for
making interpretations about the status of their OSA treatment and
its effect on sleep and glycemic control. The study also lacked
recruitment of prediabetes patients in the UC group for direct
comparison of the treatment effect between UC and CCI on sleep in
these patients.

In conclusion, these results demonstrate that overall sleep
quality significantly improved in T2D and prediabetes patients
undergoing remote CCI including nutritional ketosis but not in T2D
patients in the UC group. The sleep improvement was concurrent
with weight reduction and glycemic control improvement. The
PSQI components that improved were sleep quality, sleep distur-
bance and daytime dysfunction. These results suggest that nutri-
tional ketosis benefits overall health through improved glycemic
control as well as improved sleep quality.

Financial support

The work reported in this study was funded by Virta Health..

Author contributions

S.J.A, M.S, C.J.V and J.P.M drafted the manuscript. A.L.M, N.H.B,
S.J.H and S.J.A participated in data acquisition and compiling. M.S
and S.J.A analyzed the data. C.J.V supervised this particular analysis,

M.J. Siegmann et al. / Sleep Medicine 55 (2019) 92e99 97



J.P.M, A.L.M, S.J.H, N.H.B, W.W.C, S.D.P and J.S.D edited the manu-
script. W.W.C. proposed measuring subjective sleep quality as part
of the parent Continuous Care Intervention clinical trial. All authors
approved the final version of the manuscript.

Conflict of interest

SJA, SJH, ALM, NHB, JPM, and SDP are employed by Virta Health
Corp and were offered company's stock options. SDP and JSV are
founders of Virta Health Corp. CJV, MJS and WWC have no conflict
of interest to declare.

The ICMJE Uniform Disclosure Form for Potential Conflicts of
Interest associatedwith this article can be viewed by clicking on the
following link: https://doi.org/10.1016/j.sleep.2018.12.014.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.sleep.2018.12.014.

References

[1] Kuhn E, Brodan V, Brodanova M, et al. Metabolic reflection of sleep depriva-
tion. Act Nerv Super 1969;11:165e74.

[2] Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and
endocrine function. Lancet 1999;354:1435e9.

[3] Spiegel K, Knutson K, Leproult R, et al. Sleep loss: a novel risk factor for insulin
resistance and type-2 diabetes. J Appl Physiol 2005;99:2008e19.

[4] Nedeltcheva AV, Kessler L, Imperial J, et al. Exposure to recurrent sleep re-
striction in the setting of high caloric intake and physical inactivity results in
increased insulin resistance and reduced glucose tolerance. J Clin Endocrinol
Metab 2009;94:3242e50.

[5] Ayas NT, White DP, Al-Delaimy WK, et al. A prospective study of self-reported
sleep duration and incident diabetes in women. Diabetes Care 2003;163:205e9.

[6] Nilsson PM, Roost M, Engstrom G, et al. Incidence of diabetes in middle-aged
men is related to sleep disturbances. Diabetes Care 2004;27:2464e9.

[7] Kawakami N, Takatsuka N, Shimizu H. Sleep disturbance and onset of type 2
diabetes. Diabetes Care 2004;27:282e3.

[8] Lee SW, Ng KY, Chin WK. The impact of sleep amount and sleep quality on
glycemic control in type 2 diabetes: a systematic review and meta-analysis.
Sleep Med Rev 2017;31:91e101.

[9] Knutson KL, Ryden AM, Mander BA, et al. Role of sleep duration and quality in
the risk and severity of type 2 diabetes mellitus. Arch Intern Med 2006;166:
1768e74.

[10] Sakamota R, Yamakawa T, Takahashi K, et al. Association of usual sleep quality
and glycemic control in type 2 diabetes in Japanese: a cross sectional study.
Sleep and Food Registry in Kanagawa (SOREKA). PLoS One 2017. https://doi.
org/10.1371/journal.pone.0191771.

[11] Tsai YW, Kann NH, Tung TH, et al. Impact of subjective sleep quality on gly-
cemic control in type 2 diabetes mellitus. Family Prac 2012;29:30e5.

[12] Trento M, Broglio F, Riganti F, et al. Sleep abnormalities in type 2 diabetes may
be associated with glycemic control. Acta Diabetol 2008;45:225e9.

[13] Gozashti MH, Eslami N, Radfar MH, et al. Sleep pattern, duration and quality in
relation with glycemic control in people with type 2 diabetes mellitus. Iran J
Med Sci 2016;41:531e8.

[14] Resnick HE, Redline S, Shafar E, et al. Diabetes and sleep disturbances findings
from the sleep heart health study. Diabetes Care 2003;26(3):702e9.

[15] Foster GD, Sander MH, Millman R, et al. Obstructive sleep apnea among obese
patients with type 2 diabetes. Diabetes Care 2009;32:1017e9.

[16] American Diabetes Association. 3. Comprehensive medical evaluation and
assessment of comorbidities: standards of medical care in diabetes. Diabetes
Care 2018;41:S28e37.

[17] The IDF Consensus statement on sleep apnoea and type 2 diabetes. 2008.
p. 1e24.

[18] Yannakoulia M, Anastasiau CA, Karfapoulou E, et al. Sleep quality is associated
with weight loss maintenance status: the MedWeight Study. Sleep Med
2017;34:242e5.

[19] Xanthopoulos MS, Berkowitz R, Tapia IE. Effects of obesity therapies on sleep
disorders. Metabolism 2018;84:109e17.

[20] Foster GD, Borradaile KD, Sanders MH, et al. A randomized study on the effect
of weight loss on obstructive sleep apnea among obese patients with type 2
diabetes: the Sleep AHEAD study. Arch Intern Med 2009;169:1619e26.

[21] Greenburg DL, Lettieri CJ, Eliasson AH. Effects of surgical weight loss on
measures of obstructive sleep apnea: a meta-analysis. Am J Med 2009;122:
535e42.

[22] Shaw JE, Punjabi NM, Naughton MT, et al. The effect of treatment of
obstructive sleep apnea on glycemic control in type 2 diabetes. Am J Respir
Crit Care Med 2016;194:486e92.

[23] West SD, Nicoll DJ, Wallace TM, et al. Effect of CPAP on insulin resistance and
HbA1c in men with obstructive sleep apnoea and type 2 diabetes. Thorax
2017;62:486e92.

[24] Martinez-Ceron E, Barquiel B, Bezos AM, et al. Effect of continuous positive
airway pressure on glycemic control in patients with obstructive sleep apnea
and type 2 diabetes. A randomized clinical trial. Am J Respir Crit Care Med
2016;194:476e85.

[25] Pamidi S, Wroblewski K, Stephen M, et al. Eight hours of nightly continuous
positive airway pressure treatment of obstructive sleep apnea improves
glucose metabolism in patients with prediabetes. A randomized controlled
trial. Am J Respir Crit Care Model 2015;192:96e105.

[26] Weinstock TG, Wang X, Rueschman M, et al. A controlled trial of CPAP therapy
on metabolic control in individuals with impaired glucose tolerance and sleep
apnea. Sleep 2012;35:617e25.

[27] Phillips F, Chen CN, Crisp AH, et al. Isocaloric diet changes and electroen-
cephalographic sleep. Lancet 1975;2:723e5.

[28] Yajima K, Seya T, Iwayama H, et al. Effects of nutrient composition of dinner
on sleep architecture and energy metabolism during sleep. J Nutr Sci Vita-
minol 2014;60:114e21.

[29] Lindseth G, Lindseth P, Thompson M. Nutritional effects on sleep. West J Nurs
Res 2013;35:497e513.

[30] Afaghi A, O'Connor H, Chow CM. Acute effects of the very low carbohydrate
diet on sleep indices. Nutr Neurosci 2008;11:146e54.

[31] Kwan RM, Thomas S, Mir MA. Effects of a low carbohydrate isoenergetic diet
on sleep behavior and pulmonary functions in healthy female adult humans.
J Nutr 1986;116:2393e402.

[32] Katagiri R, Asakura K, Kobayashi S, et al. Low intake of vegetables, high intake
of confectionary, and unhealthy eating habits are associated with poor sleep
quality among middle-aged female Japanese workers. J Occup Health
2014;56:359e68.

[33] Husain AM, Yancy Jr WS, Carwile ST, et al. Diet therapy for narcolepsy.
Neurology 2004;62:2300e2.

[34] Hallbrook T, Lundgren J, Rosen I. Ketogenic diet improves sleep quality in
children with therapy-resistant epilepsy. Epilepsia 2007;48:59e65.

[35] Willi SM, Oexmann MJ, Wright NM, et al. The effects of high-protein, low-fat,
ketogenic diet on adolescents with morbid obesity, body composition, blood
chemistries and sleep abnormalities. Pediatrics 1998;101:61e7.

[36] Hallberg SJ, McKenzie AL, Williams PT, et al. Effectiveness and safety of a
novel care model for the management of type 2 diabetes at 1 year: an
open-label, non-randomized, controlled study. Diabetes Ther 2018;9:
583e612.

[37] Bhanpuri NH, Hallberg SJ, Williams PT, et al. Cardiovascular disease risk factor
responses to a type 2 diabetes care model including nutritional ketosis
induced by sustained carbohydrate restriction at 1 year: an open label, non-
randomized, controlled study. Cardiovasc Diabetol 2018;17. https://doi.org/
10.1186/s12933-018-0698-8.

[38] McKenzie AL, Hallberg SJ, Bhanpuri NH, et al. Continuous remote care model
utilizing nutritional ketosis improves type 2 diabetes risk factors in patients
with prediabetes. Diabetes 2018; 67 (Supplement 1), https://doi.org/10.2337/
db18-293-OR.

[39] Buysse DJ, Reynolds CF, Monk TH, et al. The Pittsburgh Sleep Quality Index
(PSQI): a new instrument for psychiatric research and practice. Psychiatrist
Res 1989;28:193e213.

[40] Smith MT, Wegener ST. Measures of sleep: the insomnia severity index,
medical outcomes study (MOS) sleep scale, Pittsburgh sleep diary (PSD),
and Pittsburgh sleep quality Index (PSQI). Arthritis Rheum 2003;49:
S184e9.

[41] Alexander BA. BaylorEdPsych: R package for baylor university educational
psychology quantitative courses. R package version 0.5. 2012. https://CRAN.R-
project.org/package¼BaylorEdPsych.

[42] van Buuren S, Groothuis-Oudshoorn K. Mice: multivariate imputation by
chained Equations in R. J Stat Software 2011;45:1e67.

[43] MATLAB and Statistics Toolbox release. Natick, Massachusetts, United States:
The MathWorks, Inc.; 2012b.

[44] R Core Team. R: a language and environment for statistical computing.
Vienna, Austria: R Foundation for Statistical Computing; 2018. https://www.
R-project.org/.

[45] Song Y, Ye X, Ye L, et al. Disturbed subjective sleep in Chinese females with
type 2 diabetes on insulin therapy. PLoS One 2013;8(1):e54951. https://
doi.org/10.1377/journal.pone.005495`.

[46] Suarez EC. Self-reported symptoms of sleep disturbance and inflammation,
coagulation, insulin resistance and psychosocial distress: evidence for gender
disparity. Brain Behav Immun 2008;22:960e88.

[47] Chasens ER, Korytkowski M, Sereika SM, et al. Effect of poor sleep quality and
excessive daytime sleepiness on factors associated with diabetes self man-
agement. Diabetes Educ 2013;39:74e82.

[48] Telford O, Diamantidis CJ, Bosworth HB, et al. The relationship between
Pittsburgh Sleep Quality Index subscales and diabetes control. Chronic Illn
2018. https://doi.org/10.1177/1742395318759587.

[49] Mello M, Vasques ACJ, Pareja JC, et al. Effect of biliopancreatic diversion on
sleep quality and daytime sleepiness in patients with obesity and type 2
diabetes. Arch Endocrinol Metab 2017;61:623e7.

[50] Dilektasli E, Dilektasli AG. Laparoscopic sleeve gastrectomy improves exces-
sive daytime sleepiness and sleep quality 6 months following surgery: a
prospective cohort study. Adv Ther 2016;33:774e85.

M.J. Siegmann et al. / Sleep Medicine 55 (2019) 92e9998

https://doi.org/10.1016/j.sleep.2018.12.014
https://doi.org/10.1016/j.sleep.2018.12.014
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref1
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref1
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref1
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref2
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref2
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref2
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref3
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref3
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref3
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref4
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref4
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref4
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref4
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref4
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref5
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref5
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref5
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref6
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref6
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref6
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref7
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref7
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref7
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref8
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref8
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref8
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref8
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref9
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref9
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref9
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref9
https://doi.org/10.1371/journal.pone.0191771
https://doi.org/10.1371/journal.pone.0191771
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref11
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref11
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref11
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref12
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref12
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref12
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref13
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref13
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref13
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref13
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref14
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref14
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref14
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref15
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref15
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref15
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref16
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref16
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref16
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref16
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref17
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref17
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref17
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref18
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref18
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref18
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref18
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref19
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref19
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref19
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref20
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref20
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref20
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref20
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref21
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref21
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref21
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref21
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref22
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref22
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref22
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref22
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref23
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref23
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref23
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref23
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref24
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref24
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref24
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref24
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref24
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref25
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref25
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref25
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref25
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref25
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref26
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref26
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref26
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref26
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref27
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref27
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref27
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref28
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref28
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref28
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref28
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref29
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref29
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref29
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref30
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref30
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref30
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref31
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref31
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref31
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref31
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref32
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref32
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref32
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref32
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref32
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref33
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref33
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref33
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref34
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref34
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref34
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref35
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref35
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref35
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref35
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref36
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref36
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref36
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref36
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref36
https://doi.org/10.1186/s12933-018-0698-8
https://doi.org/10.1186/s12933-018-0698-8
https://doi.org/10.2337/db18-293-OR
https://doi.org/10.2337/db18-293-OR
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref39
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref39
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref39
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref39
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref40
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref40
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref40
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref40
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref40
https://CRAN.R-project.org/package=BaylorEdPsych
https://CRAN.R-project.org/package=BaylorEdPsych
https://CRAN.R-project.org/package=BaylorEdPsych
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref42
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref42
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref42
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref43
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref43
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1377/journal.pone.005495`
https://doi.org/10.1377/journal.pone.005495`
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref46
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref46
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref46
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref46
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref47
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref47
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref47
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref47
https://doi.org/10.1177/1742395318759587
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref49
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref49
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref49
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref49
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref50
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref50
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref50
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref50


[51] Pan A, Schernhammer ES, Sun Q, et al. Rotating night shift work and risk of
type 2 diabetes: two prospective cohort studies in women. PLoS Med 2011;8:
e1001141.

[52] Reutrakul S, Hood MM, Crowley SJ, et al. Chronotype is independently asso-
ciated with glycemic control in type 2 diabetes. Diabetes Care 2013;36:
2523e9.

[53] Martin CK, Bhapkar M, Pittas AG, et al. Effect of calorie restriction on mood,
quality of life, sleep and sexual function in healthy nonobese adults: the
CALERIE 2 Randomized Clinical Trial. JAMA Intern Med 2016;176:743e52.

[54] Chaput JP, Drapeau V, Hetherington M, et al. Psychobiological impact of a
progression weight loss program in obese men. Physiol Behav 2005;86:224e32.

[55] Sakamoto Y, Oyama J, Ikeda H, et al. Effects of sitagliptin beyond glycemic
control: focus on quality of life. Cardiovasc Diabetol 2013;12:35. https://
doi.org/10.1186/1475-2840-12-35.

[56] Fried PI, McClean PA, Phillipson EA, et al. Effect of ketosis on respiratory
sensitivity to carbon dioxide in obesity. N Engl J Med 1976;294:1081e6.

[57] Hayes MR, Miller CK, Ulbrecht JS, et al. A carbohydrate-restricted diet alters
gut peptides and adiposity signals in men and women with metabolic syn-
drome. J Nutr 2007;137:1944e50.

[58] Chearskul S, Delbridge E, Shulkes A, et al. Effect of weight loss and ketosis on
postprandial cholecystokinin and free fatty acid concentrations. Am J Clin
Nutr 2008;87:1238e46.

[59] Kap�as L, Obal Jr F, Alfoldi P, et al. Effects of nocturnal intraperitoneal
administration of cholecystokinin in rats: simultaneous increase in sleep,
increase in EEG slow-wave activity, reduction of motor activity, suppression
of eating, and decrease in brain temperature. Brain Res 1988;438:155e64.

[60] Kap�as L, Obal F, Farkas I, et al. Cholecystokinin promotes sleep and reduces
food intake in diabetic rats. Physiol Behav 1991;50:417e20.

M.J. Siegmann et al. / Sleep Medicine 55 (2019) 92e99 99

http://refhub.elsevier.com/S1389-9457(18)30494-5/sref51
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref51
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref51
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref52
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref52
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref52
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref52
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref53
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref53
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref53
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref53
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref54
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref54
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref54
https://doi.org/10.1186/1475-2840-12-35
https://doi.org/10.1186/1475-2840-12-35
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref56
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref56
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref56
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref57
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref57
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref57
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref57
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref58
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref58
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref58
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref58
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref59
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref59
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref59
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref59
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref59
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref59
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref60
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref60
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref60
http://refhub.elsevier.com/S1389-9457(18)30494-5/sref60

	Washington University School of Medicine
	Digital Commons@Becker
	2019

	Improvement in patient-reported sleep in type 2 diabetes and prediabetes participants receiving a continuous care intervention with nutritional ketosis
	Morgan J. Siegmann
	Shaminie Athinarayanan
	Sarah J. Hallberg
	Amy L. McKenzie
	Nasir H. Bhanpuri
	See next page for additional authors
	Recommended Citation
	Authors


	Improvement in patient-reported sleep in type 2 diabetes and prediabetes participants receiving a continuous care intervent ...
	1. Introduction
	2. Materials and methods
	2.1. Study participants and design
	2.2. Demographic and clinical variables
	2.3. Pittsburgh Sleep Quality Index (PSQI)
	2.4. Pain, shifted sleep chronotype and CPAP usage
	2.5. Statistical analyses

	3. Results
	3.1. Baseline participant characteristics
	3.2. Effect of intervention on sleep
	3.2.1. Global PSQI and component scores
	3.2.2. Resolution of poor sleep quality
	3.2.3. Association within the CCI group between changes in global PSQI with metabolic and inflammatory markers

	3.3. Effect of persistent pain on sleep improvement
	3.4. Effect of shifted sleep chronotype on sleep improvement
	3.5. Effect of CPAP usage on sleep improvement

	4. Discussion
	Financial support
	Author contributions
	Conflict of interest
	Appendix A. Supplementary data
	References


