79 research outputs found

    Characteristics of long-duration inhibitory postsynaptic potentials in rat neocortical neurons in vitro

    Get PDF
    1. The characteristics of long-duration inhibitory postsynaptic potentials (l-IPSPs) which are evoked in rat frontal neocortical neurons by local electrical stimulation were investigated with intracellular recordings from anin vitro slice preparation. 2. Stimulation with suprathreshold intensities evoked l-IPSPs with typical durations of 600–900 msec at resting membrane potential. Conductance increases of 15–60% were measured at the peak amplitude of l-IPSPs (150–250 msec poststimulus). 3. The duration of the conductance increases during l-IPSPs displayed a significant voltage dependence, decreasing as the membrance potential was depolarized and increasing with hyperpolarization. 4. The reversal potential of l-IPSPs is significantly altered by reductions in the extracellular potassium concentration. Therefore it is concluded that l-IPSPs in rat neocortical neurons are generated by the activation of a potassium conductance. 5. l-IPSPs exhibit stimulation fatigue. Stimulation with a frequency of 1 Hz produces a complete fatigue of the conductance increases during l-IPSPs after approximately 20 consecutive stimuli. Recovery from this fatigue requires minutes. 6. l-IPSPs are not blocked by bicuculline but are blocked by baclofen

    The Politics of Race and Class and the Changing Spatial Fortunes of the McCarren Pool in Brooklyn, New York, 1936-2010

    Get PDF
    This paper explores the changing spatial properties of the McCarren Pool and connects them to the politics of race and class. The pool was a large liberal government project that sought to improve the leisure time of working class Brooklynites and between 1936 and the early 1970s it was a quasi-public functional space. In the 1970s and the early 1980s, the pool became a quasi-public dysfunctional space because the city government reduced its maintenance and staffing levels. Working class whites of the area engaged into neighborhood defense in order to prevent the influx of Latinos and African Americans into parts of Williamsburg and Greenpoint and this included the environs of the McCarren Pool. The pool was shut down in 1983 because of a mechanical failure. Its restoration did not take place because residents and storekeepers near the vicinity of the pool complained that by the 1970s, it was only African Americans and Latinos who patronized the pool and that their presence in the neighborhood undermined white exclusivity. For two decades, the McCarren Pool became a multi-use alternative space frequented by homeless people, graffiti artists, heroin users, teenagers, and drug dealers. Unlike previous decades, during this period, people of various racial and ethnic backgrounds frequented the pool area in a relatively harmonious manner. In the early part of the twenty-first century, a neoliberal city administration allowed a corporation to organize music concerts in the pool premises and promised to restore the facility into an operable swimming pool. The problem with this restoration project is that the history of the pool between the early 1970s and the early 2000s is downplayed and this does not serve well former or future users of the poo

    Going Deeper: Metagenome of a Hadopelagic Microbial Community

    Get PDF
    The paucity of sequence data from pelagic deep-ocean microbial assemblages has severely restricted molecular exploration of the largest biome on Earth. In this study, an analysis is presented of a large-scale 454-pyrosequencing metagenomic dataset from a hadopelagic environment from 6,000 m depth within the Puerto Rico Trench (PRT). A total of 145 Mbp of assembled sequence data was generated and compared to two pelagic deep ocean metagenomes and two representative surface seawater datasets from the Sargasso Sea. In a number of instances, all three deep metagenomes displayed similar trends, but were most magnified in the PRT, including enrichment in functions for two-component signal transduction mechanisms and transcriptional regulation. Overrepresented transporters in the PRT metagenome included outer membrane porins, diverse cation transporters, and di- and tri-carboxylate transporters that matched well with the prevailing catabolic processes such as butanoate, glyoxylate and dicarboxylate metabolism. A surprisingly high abundance of sulfatases for the degradation of sulfated polysaccharides were also present in the PRT. The most dramatic adaptational feature of the PRT microbes appears to be heavy metal resistance, as reflected in the large numbers of transporters present for their removal. As a complement to the metagenome approach, single-cell genomic techniques were utilized to generate partial whole-genome sequence data from four uncultivated cells from members of the dominant phyla within the PRT, Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes and Planctomycetes. The single-cell sequence data provided genomic context for many of the highly abundant functional attributes identified from the PRT metagenome, as well as recruiting heavily the PRT metagenomic sequence data compared to 172 available reference marine genomes. Through these multifaceted sequence approaches, new insights have been provided into the unique functional attributes present in microbes residing in a deeper layer of the ocean far removed from the more productive sun-drenched zones above

    Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse

    Get PDF
    Despite recent advances, the link between the evolution of atmospheric CO2 and climate during the Eocene greenhouse remains uncertain. In particular, modelling studies suggest that in order to achieve the global warmth that characterised the early Eocene, warmer climates must be more sensitive to CO2 forcing than colder climates. Here, we test this assertion in the geological record by combining a new high-resolution boron isotope-based CO2 record with novel estimates of Global Mean Temperature. We find that Equilibrium Climate Sensitivity (ECS) was indeed higher during the warmest intervals of the Eocene, agreeing well with recent model simulations, and declined through the Eocene as global climate cooled. These observations indicate that the canonical IPCC range of ECS (1.5 to 4.5 °C per doubling) is unlikely to be appropriate for high-CO2 warm climates of the past, and the state dependency of ECS may play an increasingly important role in determining the state of future climate as the Earth continues to warm

    Phylogenetic and Evolutionary Patterns in Microbial Carotenoid Biosynthesis Are Revealed by Comparative Genomics

    Get PDF
    BACKGROUND: Carotenoids are multifunctional, taxonomically widespread and biotechnologically important pigments. Their biosynthesis serves as a model system for understanding the evolution of secondary metabolism. Microbial carotenoid diversity and evolution has hitherto been analyzed primarily from structural and biosynthetic perspectives, with the few phylogenetic analyses of microbial carotenoid biosynthetic proteins using either used limited datasets or lacking methodological rigor. Given the recent accumulation of microbial genome sequences, a reappraisal of microbial carotenoid biosynthetic diversity and evolution from the perspective of comparative genomics is warranted to validate and complement models of microbial carotenoid diversity and evolution based upon structural and biosynthetic data. METHODOLOGY/PRINCIPAL FINDINGS: Comparative genomics were used to identify and analyze in silico microbial carotenoid biosynthetic pathways. Four major phylogenetic lineages of carotenoid biosynthesis are suggested composed of: (i) Proteobacteria; (ii) Firmicutes; (iii) Chlorobi, Cyanobacteria and photosynthetic eukaryotes; and (iv) Archaea, Bacteroidetes and two separate sub-lineages of Actinobacteria. Using this phylogenetic framework, specific evolutionary mechanisms are proposed for carotenoid desaturase CrtI-family enzymes and carotenoid cyclases. Several phylogenetic lineage-specific evolutionary mechanisms are also suggested, including: (i) horizontal gene transfer; (ii) gene acquisition followed by differential gene loss; (iii) co-evolution with other biochemical structures such as proteorhodopsins; and (iv) positive selection. CONCLUSIONS/SIGNIFICANCE: Comparative genomics analyses of microbial carotenoid biosynthetic proteins indicate a much greater taxonomic diversity then that identified based on structural and biosynthetic data, and divides microbial carotenoid biosynthesis into several, well-supported phylogenetic lineages not evident previously. This phylogenetic framework is applicable to understanding the evolution of specific carotenoid biosynthetic proteins or the unique characteristics of carotenoid biosynthetic evolution in a specific phylogenetic lineage. Together, these analyses suggest a "bramble" model for microbial carotenoid biosynthesis whereby later biosynthetic steps exhibit greater evolutionary plasticity and reticulation compared to those closer to the biosynthetic "root". Structural diversification may be constrained ("trimmed") where selection is strong, but less so where selection is weaker. These analyses also highlight likely productive avenues for future research and bioprospecting by identifying both gaps in current knowledge and taxa which may particularly facilitate carotenoid diversification

    Effects of nutrient enrichment on surface microbial community gene expression in the oligotrophic North Pacific Subtropical Gyre

    Get PDF
    Marine microbial communities are critical for biogeochemical cycles and the productivity of ocean ecosystems. Primary productivity in the surface ocean is constrained by nutrients which in part are supplied by mixing with deeper water. Little is known about the time scales, frequency, or impact of mixing on microbial communities. We combined in situ sampling using the Environmental Sample Processor and a small-scale mixing experiment with lower euphotic zone water to determine how individual populations respond to mixing. Transcriptional responses were measured using the MicroTOOLs (Microbiological Targets for Ocean Observing Laboratories) microarray, which targets all three domains of life and viruses. The experiment showed that mixing substantially affects photosynthetic taxa as expected, but surprisingly also showed that populations respond differently to unfiltered deep water which contains particles (organisms and detritus) compared to filtered deep water that only contains nutrients and viruses, pointing to the impact of biological interactions associated with these events. Comparison between experimental and in situ population transcription patterns indicated that manipulated populations can serve as analogs for natural populations, and that natural populations may be frequently or continuously responding to nutrients from deeper waters. Finally, this study also shows that the microarray approach, which is complementary to metatranscriptomic sequencing, is useful for determining the physiological status of in situ microbial communities
    • …
    corecore