219 research outputs found

    Vibration and its effect on the respiratory system

    Get PDF
    Vibration is a manual technique used widely to assist with the removal of pulmonary secretions. Little is known about how vibration is applied or its effect on the respiratory system. The purpose of this study was to describe mechanical consequences of vibration on the chest wall of a normal subject and the effects of vibration on expiratory flow rates and volumes. The effects of vibration were compared to other interventions of chest wall compression, chest wall oscillation, cough, huff from high lung volume, inspiration to total lung capacity with relaxed expiration, tidal breathing, and sham. Sixteen physiotherapists applied vibration and other interventions in a randomised order to the chest wall of a healthy adult female subject. The magnitude and direction of the force and the frequency of vibration were measured by an instrumented bed with seven load cells. Inductive plethsysmography measured the change in chest wall circumference with vibration. A heated pneumotachometer measured inspiratory and expiratory flow rates, which were integrated to provide volumes. Vibration was applied with a mean resultant force of 74.4 N (SD 47.1). The mean (SD) change in chest wall circumference and frequency of vibration were 0.8 cm (SD 0.4) and 5.5 Hz (SD 0.8) respectively. The mean peak expiratory flow rate was 0.97 l/s (SD 0.27). Peak expiratory flow rates with vibration were less than 20% of those achieved with cough or huff from high lung volume but greater than with chest wall compression, chest wall oscillation, relaxed expiration from total lung capacity, sham treatment or tidal breathing

    The Youth-Physical Activity Towards Health (Y-PATH) intervention: Results of a 24 month cluster randomised controlled trial

    Get PDF
    Low levels of physical activity in youth are an issue internationally, with the age related decline in levels over the adolescent period of particular concern. This study evaluated a multi-component school-based intervention (Y-PATH: Youth-Physical Activity Towards Health), focused on halting the age-related decline in physical activity of youth in early adolescence. A cluster randomized controlled trial in 20 post primary schools (10 control, 10 intervention) was conducted. Data were collected from all 20 schools at baseline (2013), and 12 months (2014), and from 10 of these schools (5 intervention) at 24 months (2015). The setting was mixed gender post primary schools residing in the greater area of Dublin, Ireland. Principals from each school were asked to nominate one first year class group attending their school in September 2013 to participate in the study (N = 564). Intervention schools implemented the Y-PATH whole school intervention, comprising teacher component, parent component, and PE component; while control schools continued with usual care. The main outcome measure was accelerometer derived average minutes of daily moderate to vigorous physical activity (MVPA). Data were analysed from October 2015 -November 2017. At baseline 490 participants were assessed (mean age 12.78y ± .42). Results of the multilevel regression analysis confirmed that there was a significant time intervention effect, and this was predominantly contributed by the difference between control and intervention groups within females. Findings support the case for national dissemination of the Y-PATH intervention so that the knowledge learned can be translated to routine practice in schools

    Characteristics of long-duration inhibitory postsynaptic potentials in rat neocortical neurons in vitro

    Get PDF
    1. The characteristics of long-duration inhibitory postsynaptic potentials (l-IPSPs) which are evoked in rat frontal neocortical neurons by local electrical stimulation were investigated with intracellular recordings from anin vitro slice preparation. 2. Stimulation with suprathreshold intensities evoked l-IPSPs with typical durations of 600–900 msec at resting membrane potential. Conductance increases of 15–60% were measured at the peak amplitude of l-IPSPs (150–250 msec poststimulus). 3. The duration of the conductance increases during l-IPSPs displayed a significant voltage dependence, decreasing as the membrance potential was depolarized and increasing with hyperpolarization. 4. The reversal potential of l-IPSPs is significantly altered by reductions in the extracellular potassium concentration. Therefore it is concluded that l-IPSPs in rat neocortical neurons are generated by the activation of a potassium conductance. 5. l-IPSPs exhibit stimulation fatigue. Stimulation with a frequency of 1 Hz produces a complete fatigue of the conductance increases during l-IPSPs after approximately 20 consecutive stimuli. Recovery from this fatigue requires minutes. 6. l-IPSPs are not blocked by bicuculline but are blocked by baclofen

    On the Mysterious Propulsion of Synechococcus

    Get PDF
    We propose a model for the self-propulsion of the marine bacterium Synechococcus utilizing a continuous looped helical track analogous to that found in Myxobacteria [1]. In our model cargo-carrying protein motors, driven by proton-motive force, move along a continuous looped helical track. The movement of the cargo creates surface distortions in the form of small amplitude traveling ridges along the S-layer above the helical track. The resulting fluid motion adjacent to the helical ribbon provides the propulsive thrust. A variation on the helical rotor model of [1] allows the motors to be anchored to the peptidoglycan layer, where they drive rotation of the track creating traveling helical waves along the S-layer. We derive expressions relating the swimming speed to the amplitude, wavelength, and velocity of the surface waves induced by the helical rotor, and show that they fall in reasonable ranges to explain the velocity and rotation rate of swimming Synechococcus

    Light-induced transcriptional responses associated with proteorhodopsin-enhanced growth in a marine flavobacterium

    Get PDF
    Proteorhodopsin (PR) is a photoprotein that functions as a light-driven proton pump in diverse marine Bacteria and Archaea. Recent studies have suggested that PR may enhance both growth rate and yield in some flavobacteria when grown under nutrient-limiting conditions in the light. The direct involvement of PR, and the metabolic details enabling light-stimulated growth, however, remain uncertain. Here, we surveyed transcriptional and growth responses of a PR-containing marine flavobacterium during carbon-limited growth in the light and the dark. As previously reported (Gómez-Consarnau et al., 2007), Dokdonia strain MED134 exhibited light-enhanced growth rates and cell yields under low carbon growth conditions. Inhibition of retinal biosynthesis abolished the light-stimulated growth response, supporting a direct role for retinal-bound PR in light-enhanced growth. Among protein-coding transcripts, both PR and retinal biosynthetic enzymes showed significant upregulation in the light. Other light-associated proteins, including bacterial cryptochrome and DNA photolyase, were also expressed at significantly higher levels in the light. Membrane transporters for Na+/phosphate and Na+/alanine symporters, and the Na+-translocating NADH-quinone oxidoreductase (NQR) linked electron transport chain, were also significantly upregulated in the light. Culture experiments using a specific inhibitor of Na+-translocating NQR indicated that sodium pumping via NQR is a critical metabolic process in the light-stimulated growth of MED134. In total, the results suggested the importance of both the PR-enabled, light-driven proton gradient, as well as the generation of a Na+ ion gradient, as essential components for light-enhanced growth in these flavobacteria.Gordon and Betty Moore FoundationNational Science Foundation (U.S.) (NSF Science and Technology Center Award EF0424599.)Japan Society for the Promotion of Science (Postdoctoral Fellowships for Research Abroad

    The Politics of Race and Class and the Changing Spatial Fortunes of the McCarren Pool in Brooklyn, New York, 1936-2010

    Get PDF
    This paper explores the changing spatial properties of the McCarren Pool and connects them to the politics of race and class. The pool was a large liberal government project that sought to improve the leisure time of working class Brooklynites and between 1936 and the early 1970s it was a quasi-public functional space. In the 1970s and the early 1980s, the pool became a quasi-public dysfunctional space because the city government reduced its maintenance and staffing levels. Working class whites of the area engaged into neighborhood defense in order to prevent the influx of Latinos and African Americans into parts of Williamsburg and Greenpoint and this included the environs of the McCarren Pool. The pool was shut down in 1983 because of a mechanical failure. Its restoration did not take place because residents and storekeepers near the vicinity of the pool complained that by the 1970s, it was only African Americans and Latinos who patronized the pool and that their presence in the neighborhood undermined white exclusivity. For two decades, the McCarren Pool became a multi-use alternative space frequented by homeless people, graffiti artists, heroin users, teenagers, and drug dealers. Unlike previous decades, during this period, people of various racial and ethnic backgrounds frequented the pool area in a relatively harmonious manner. In the early part of the twenty-first century, a neoliberal city administration allowed a corporation to organize music concerts in the pool premises and promised to restore the facility into an operable swimming pool. The problem with this restoration project is that the history of the pool between the early 1970s and the early 2000s is downplayed and this does not serve well former or future users of the poo

    Interannual variability of primary production and dissolved organic nitrogen storage in the North Pacific Subtropical Gyre

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): G03019, doi:10.1029/2011JG001830.The upper ocean primary production measurements from the Hawaii Ocean Time series (HOT) at Station ALOHA in the North Pacific Subtropical Gyre showed substantial variability over the last two decades. The annual average primary production varied within a limited range over 1991–1998, significantly increased in 1999–2000 and then gradually decreased afterwards. This variability was investigated using a one-dimensional ecosystem model. The long-term HOT observations were used to constrain the model by prescribing physical forcings and lower boundary conditions and optimizing the model parameters against data using data assimilation. The model reproduced the general interannual pattern in the observed primary production, and mesoscale variability in vertical velocity was identified as a major contributing factor to the interannual variability in the simulation. Several strong upwelling events occurred in 1999, which brought up nitrate at rates several times higher than other years and elevated the model primary production. Our model results suggested a hypothesis for the observed interannual variability pattern of primary production at Station ALOHA: Part of the upwelled nitrate input in 1999 was converted to and accumulated as semilabile dissolved organic nitrogen (DON), and subsequent recycling of this semilabile DON supported enhanced primary productivity for the next several years as the semilabile DON perturbation was gradually removed via export.This work was supported in part by the Center for Microbial Oceanography, Research and Education (C-MORE) (NSF EF-0424599), Hawaii Ocean Time series program (NSF OCE09–26766), the Gordon and Betty Moore Foundation, and the Marine Biological Laboratory.2013-03-1
    corecore