CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
unknown
Interannual variability of primary production and dissolved organic nitrogen storage in the North Pacific Subtropical Gyre
Authors
Azam
Bidigare
+37 more
Calil
Calil
Carlson
Carlson
Casciotti
Church
Church
Corno
David M. Karl
Deutsch
Dore
Dore
Ducklow
Friedrichs
Hedges
Hugh W. Ducklow
Jackson
Karl
Karl
Karl
Karl
Karl
Karl
Karl
Lawson
Letelier
Luo
Marjorie A. M. Friedrichs
Matthew J. Church
McCarren
Monod
Redfield
Saba
Scott C. Doney
Sverdrup
Vaillancourt
Ya-Wei Luo
Publication date
1 January 2012
Publisher
'American Geophysical Union (AGU)'
Doi
Abstract
Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): G03019, doi:10.1029/2011JG001830.The upper ocean primary production measurements from the Hawaii Ocean Time series (HOT) at Station ALOHA in the North Pacific Subtropical Gyre showed substantial variability over the last two decades. The annual average primary production varied within a limited range over 1991–1998, significantly increased in 1999–2000 and then gradually decreased afterwards. This variability was investigated using a one-dimensional ecosystem model. The long-term HOT observations were used to constrain the model by prescribing physical forcings and lower boundary conditions and optimizing the model parameters against data using data assimilation. The model reproduced the general interannual pattern in the observed primary production, and mesoscale variability in vertical velocity was identified as a major contributing factor to the interannual variability in the simulation. Several strong upwelling events occurred in 1999, which brought up nitrate at rates several times higher than other years and elevated the model primary production. Our model results suggested a hypothesis for the observed interannual variability pattern of primary production at Station ALOHA: Part of the upwelled nitrate input in 1999 was converted to and accumulated as semilabile dissolved organic nitrogen (DON), and subsequent recycling of this semilabile DON supported enhanced primary productivity for the next several years as the semilabile DON perturbation was gradually removed via export.This work was supported in part by the Center for Microbial Oceanography, Research and Education (C-MORE) (NSF EF-0424599), Hawaii Ocean Time series program (NSF OCE09–26766), the Gordon and Betty Moore Foundation, and the Marine Biological Laboratory.2013-03-1
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1029%2F2011jg00183...
Last time updated on 24/03/2019
Woods Hole Open Access Server
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:darchive.mblwhoilibrary.or...
Last time updated on 05/10/2012
William & Mary ScholarWorks
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:null:internal/18457
Last time updated on 05/10/2025