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ABSTRACT:  Proteorhodopsin (PR) is a photoprotein that functions as a light-driven proton 32 

pump in diverse marine Bacteria and Archaea.  Recent studies have suggested that PR may 33 

enhance both growth rate and yield in some flavobacteria when grown under nutrient limiting  34 

conditions in the light.  The direct involvement of PR, and the metabolic details enabling 35 

light-stimulated growth however, remain uncertain.  Here, we surveyed transcriptional and 36 

growth responses of a PR-containing marine flavobacterium during carbon-limited growth in 37 

the light and the dark.  As previously reported (Gómez-Consarnau et al., Nature 445: 210-213, 38 

2007), Dokdonia strain MED134 exhibited light-enhanced growth rates and cell yields under 39 

low carbon growth conditions.  Inhibition of retinal biosynthesis abolished the light-40 

stimulated growth response, supporting a direct role for  retinal-bound PR in light enhanced 41 

growth.  Among protein-coding transcripts, both PR and retinal biosynthetic enzymes showed 42 

significant upregulation in the light.  Other light-associated proteins, including bacterial 43 

cryptochrome and DNA photolyase, were also expressed at significantly higher levels in the 44 

light.  Membrane transporters for Na+/phosphate and Na+/alanine symporters, and the Na+-45 

translocating NADH-quinone oxidoreductase (NQR) linked electron transport chain, were 46 

also significantly upregulated in the light.  Culture experiments using a specific inhibitor of 47 

Na+-translocating NQR indicated that sodium pumping via NQR is a critical metabolic 48 

process in the light-stimulated growth of MED134.  In total, the results suggested the 49 

importance of both the PR-enabled, light-driven proton gradient, as well as the generation of 50 

a Na+ ion gradient, as essential components for light-enhanced growth in these flavobacteria.51 
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Introduction 52 

Some prokaryotes possess proteins that interact with light, and convert it into energy for 53 

growth or into sensory information.  One class of energy-harvesting photoproteins called 54 

rhodopsins consist of single, membrane-embedded protein covalently bound to the 55 

chromophore retinal (a light-sensitive pigment) (Spudich and Jung, 2005).  Ten years ago, 56 

prokaryotic rhodopsin, proteorhodopsin (PR), was discovered through metagenomic analyses 57 

of marine bacterioplankton genome fragments (reviewed by DeLong and Béjà, 2010).  Béjà 58 

et al. (2000) found that an uncultivated marine SAR86 clade member in 59 

Gammaproteobacteria contained a bacteriorhodopsin-like gene, dubbed PR.  Further, the 60 

marine SAR86-derived PR functioned as a proton pump, when the recombinant Escherichia 61 

coli  expressing PR is exposed to light.  PRs were subsequently detected in many other 62 

marine bacteria, some of which appeared to be “tuned” to absorb specific wavelengths of 63 

light associated with their habitat of origin; green light in surface waters and blue light in 64 

deep waters (Béjà et al., 2001).  Additional studies have found PR genes in a diverse array of 65 

abundant marine bacterial and archaeal clades (Giovannoni et al., 2005; Frigaard et al., 2006; 66 

Brown and Jung, 2006; McCarren and DeLong, 2007).  Based on genomic surveys, a large 67 

fraction of naturally occurring marine bacterioplankton in oceanic surface seawaters appear 68 

to contain the PR gene (de la Torre et al., 2003; Sabehi et al., 2005; Moran and Miller, 2007; 69 

DeLong 2009).  Interestingly, chromophore biosynthetic genes including a carotenoid 70 

biosynthetic gene cluster, and a novel blh gene encoding a 15,15’-β-carotene dioxygenase 71 

that cleaves β-carotene to yield retinal, were found linked to the PR gene in some 72 

microorganisms (Sabehi et al., 2005).   Martinez et al. (2007) demonstrated that the 73 

expression of the entire PR photosystem (genetically linked PR and retinal biosynthetic 74 

genes) in E. coli can result in proton-pumping activity in light, and that the resulting pmf can 75 

be used for ATP synthesis via the membrane-embedded ATP synthase.  Furthermore, PR in 76 
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recombinant E. coli can generate a light-driven pmf sufficient to increase the rate of flagellar 77 

rotation, providing estimates for energy flux through the photosystem (Walter et al., 2007). 78 

 PR-containing marine bacterial isolates have been recently cultured from a variety of 79 

marine environments.  These isolates include members of SAR11 (Alphaproteobacteria), 80 

OM43 (Betaproteobacteria), and SAR 92 (Gammaproteobacteria) clades,  as well as members 81 

of the Bacteroidetes and Vibrionaceae (Giovannoni et al., 2005; Frigaard et al., 2006; 82 

McCarren and DeLong, 2007; Stingl et al., 2007; González et al., 2008).  Laboratory 83 

experiments examining light-stimulated growth in some of these isolates however have 84 

proven equivocal.  Some studies could detect no significant light enhancement of either 85 

growth rates or cell yields in PR-containing isolates (Giovannoni et al., 2005; Stingl et al., 86 

2007).  However, light-enhanced growth rates and cell yields were reported in one PR-87 

containing marine flavobacterium, Dokdonia sp. MED134 (Gómez-Consarnau et al., 2007).  88 

Additionally, microcosm studies suggested that some of marine flavobacteria and SAR11 89 

populations exhibited enhanced expression of the PR gene in the presence of light (Lami et 90 

al., 2009).  As well, Gómez-Consarnau et al. (2010) demonstrated the enhanced long-term 91 

survival of PR-containing Vibrio cells in the light, but not in darkness. Nevertheless, the 92 

specific metabolic processes that facilitate light-enhanced growth or survival are not yet well 93 

understood. 94 

 To better characterize the photophysiology of PR-containing Flavobacteria, we 95 

performed transcriptomic analyses targeting total RNA extracted from MED134 exposed to 96 

light or in the dark.  Transcriptional profiles derived from cultures incubated in the light and 97 

dark were analyzed, and these results were used to further direct laboratory experiments 98 

using different growth substrates and inhibitors.  The effect of light on growth at various 99 

carbon concentrations, and the effect of retinal biosynthesis inhibitors on light-enhanced 100 

growth,  were explored.  In addition, the effects of sodium-translocating respiratory chain 101 
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inhibitors on light-stimulated on growth were also examined.  The combined results from 102 

both gene expression studies and physiological experiments were used to develop a model 103 

that incorporates some of the important features of  photoheterotrophic growth observed in 104 

Dokdonia strain MED 134. 105 

 106 

 107 

Materials and methods 108 

Strain and culture conditions 109 

PR-containing marine flavobacterium, Dokdonia sp. MED134, was isolated from surface 110 

seawater in Northwest Mediterranean Sea (Gómez-Consarnau et al., 2007).  This strain was 111 

kindly provided to us by Jarone Pinhassi (University of Kalmar, Sweden).  MED134 was 112 

grown in artificial seawater (ASW) (35 practical salinity units, prepared from Sea Salts; 113 

Sigma) containing low concentration of dissolved organic carbon (DOC) (0.05 mM C).  114 

ASW was filter-sterilized through 0.2 μm-pore-size filter system (Nalgene) and autoclaved.  115 

Then 250 ml aliquots of ASW (containing a background concentration of 0.05 mM C of 116 

DOC), were partially supplemented with full strength medium (FSM; 0.5 g of peptone [Bacto 117 

Pepton, BD] and 0.1 g of yeast extract [Bacto Yeast Extract, BD] per 100 ml of ASW), to 118 

yield final DOC concentrations of 0.14 and 0.39 mM C, respectively.  All media were also 119 

supplemented with 225 μM of NH4Cl and 44.7 μM of Na2HPO4·12H2O, to avoid inorganic 120 

nitrogen and phosphate limitation.  DOC concentrations were measured using the high 121 

temperature combustion method on TOC-V (Shimadzu) with platinized aluminum catalyst.  122 

The bacteria were initially grown in ASW enriched to 1.1 mM C, washed in ASW, and then 123 

diluted into three different ASW media, each containing a different DOC concentration (0.05, 124 

0.14 and 0.39 mM C).  Cultures were incubated at 22ºC under continuous white light 125 

(approximately 150 μmol of photons m-2 s-1) or in the darkness. 126 
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 To determine bacterial cell density, cultures were filtered with pre-blackened Isopore 127 

membrane filter (pore size, 0.22 μm; Millipore).  Bacterial cells on the filter were stained 128 

with SYBR Green I (1:100 dilution; Molecular Probes) for 15 min, and counted under an 129 

epifluorescence microscope (Axioskop 2, Zeizz).  All culture experiments were performed in 130 

triplicate. 131 

 132 

Cultivation for transcriptomic analyses 133 

MED134 was grown on 900 ml of ASW enriched to 0.14 mM C at 22ºC in the darkness for 134 

the first 2 days.  At this time, 400 ml of culture was filtered onto a pore-size 0.22-μm 135 

Durapore membrane filter (25 mm diameter, Millipore), yielding the D2 sample.  The 136 

remaining culture was split in two 250 ml flasks that were incubated again at 22ºC under the 137 

continuous white light (approximately 150 μmol of photons m-2 s-1) or in the darkness.  After 138 

2 more days, the cultures were filtered onto Durapore membrane filters (Millipore), yielding 139 

samples L2 (light conditions) and D4 (dark conditions), respectively.  Filter samples were 140 

immediately placed into screw-cap tubes containing 1 ml of RNAlater (Ambion) and stored 141 

at -80ºC until RNA extraction. 142 

  143 

Total RNA extraction and rRNA subtraction 144 

Total RNA was extracted from the filter samples using a modification of the mirVana 145 

miRNA isolation kit (Ambion) as described previously (Shi et al., 2009; McCarren et al., 146 

2010).  Briefly, filter samples were thawed on ice, and the RNAlater surrounding each filter 147 

was removed and discarded.  The filters were immersed in Lysis/Binding buffer (Ambion) 148 

and mixed to lyse attached cells.  Total RNA was extracted from the lysate according to the 149 

manufacturer's protocol.  Remaining genomic DNA in RNA extraction was removed using a 150 

TURBO DNA-free kit (Ambion). 151 
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 Bulk DNA was extracted from MED134 cultured under suitable condition based on a 152 

conventional extraction protocol.  Cells of strain were lysed with lysozyme and proteinase K 153 

solution.  Then the genomic DNAs were extracted with phenol-chloroform-isoamyl alcohol 154 

and precipitated with ethanol. 155 

 16S and 23S rRNAs were removed by the subtractive hybridization described by 156 

Stewart et al. (2010).  Ribonucleotide probes targeting 16S and 23S rRNA genes were 157 

generated from the bulk DNA extracted from MED134.  Templates for probe generation 158 

were first prepared by PCR using Herculase II Fusion DNA Polymerase (Stratagene) and 159 

strain-specific primers flanking nearly the full length of the bacterial 16S and 23S rRNA 160 

genes, with reverse primers modified to contain the T7 RNA polymerase promoter sequence 161 

(Supplementary Table S1).  Biotinylated antisense rRNA probes were generated by in vitro 162 

transcription with T7 RNA polymerase, ATP, GTP, CTP, UTP, biotin-11-CTP, biotin-16-163 

UTP (Roche).  Biotinylated rRNA probes were hybridized to complimentary rRNA 164 

molecules in total RNA sample.  Then biotinylated double-stranded rRNA was removed from 165 

the sample by hybridization to Streptavidin-coated magnetic beads (New England Biolabs).  166 

The subtraction efficiency was evaluated by monitoring the removal of 16S and 23S peaks 167 

from total RNA profiles using a 2100 Bioanalyzer (Agilent). 168 

 169 

RNA amplification, cDNA synthesis, and pyrosequencing 170 

The rRNA-subtracted RNA (10-15 ng) was amplified using the MessageAmp II-Bacteria kit 171 

(Ambion) as described previously (Shi et al., 2009; McCarren et al., 2010).  In brief, total 172 

RNA were polyadenylated using Escherichia coli poly(A) polymerase.  Polyadenylated RNA 173 

was converted to double-stranded cDNA via reverse transcription primed with an oligo(dT) 174 

primer containing a promoter sequence for T7 RNA polymerase and a recognition site for the 175 

restriction enzyme BpmI (T7-BpmI-(dT)16VN) (Supplementary Table S1).  cDNA was 176 
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transcribed in vitro at 37°C for 12 hr, yielding large quantities (40-60 μg) of single-stranded 177 

antisense RNA.  The SuperScript double-stranded cDNA synthesis kit (Invitrogen) was used 178 

to convert antisense RNA to double-stranded cDNA, which was then digested with BpmI to 179 

remove poly(A) tails.  Prior to pyrosequencing, poly(A)-removed cDNA was purified by 180 

using the AMPure kit (Beckman Coulter Genomics).  Purified cDNA was used for the 181 

generation of single-stranded DNA libraries and the bead-bound fragments were amplified by 182 

emulsion PCR according to established protocols (454 Life Sciences, Roche).  The resulting 183 

bead-bound single stranded cDNAs were then pyrosequenced on the 454 FLX platform 184 

(Roche).  All the cDNA sequences generated in this study have been submitted to the 185 

GenBank short read archive under accession number SRA029329. 186 

 187 

Analyses of pyrosequence data 188 

rRNA and tRNA reads were identified using BLASTN against rRNA and tRNA sequences in 189 

MED134 genome data, which are deposited in GenBank under accession no. 190 

AAMZ00000000 (Gómez-Consarnau et al., 2007).  Reads producing alignments with bit 191 

scores greater than 50 were considered as rRNA and tRNA sequences.  Protein-encoding 192 

cDNAs (from mRNA) were identified using BLASTX against peptide sequences collected 193 

from MED134 genome data (bit score ≥50).  Small RNAs (sRNAs) were analyzed using the 194 

Rfam (version 10.0) website (http://rfam.sanger.ac.uk/).  Rfam is a collection of non-coding 195 

RNA families, each represented by multiple sequence alignments, consensus secondary 196 

structures, and covariance models, including 1,446 families in January 2010 (Gardner et al., 197 

2009).  Finally, in order to identify MED134 specific sRNA that might not be represented in 198 

Rfam, we assembled a database of intergenic regions (IGRs) in the genome of MED134 199 

longer than 100 bp (total 992 sequences) which might encode putative sRNAs.  Reads with 200 

matches to the IGRs database (bit score ≥50) were considered sRNA reads. 201 
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 L2/D4 ratios were calculated based on read number of each cDNA, which was 202 

normalized by total number of protein-encoding reads in each sample.  The statistic 203 

significance of the change observed between cultures in light and dark (L2 and D4) for each 204 

cDNA was determined based on false-discovery rate method (q-value ≤0.05) (Benjamini and 205 

Hochberg, 1995; Storey and Tibshirani, 2003).  Clustering analyses of transcriptomics 206 

datasets were performed in GenePattern (Reich et al., 2006), using hierarchical clustering 207 

(Eisen et al., 1998) by Pearson correlations for both rows and columns, using pairwise 208 

complete-linkage. 209 

 210 

Culture experiments with specific inhibitors 211 

To confirm an importance of retinal-bound PR for the light-stimulated growth, we performed 212 

culture experiments with 2-(4-methylphenoxy)triethylamine hydrochloride (MPTA).  MPTA 213 

is known to prevent lycopene cyclization in retinal biosynthesis pathway (Cunningham et al., 214 

1994; Armstrong, 1999).  First, we cultured MED134 on Marine Agar 2216 (Difco) amended 215 

with MPTA at a final concentration of 300 μM and confirmed the effect of MPTA against 216 

strain MED134 based on color of colonies.  Next, MED134 was grown in ASW slightly 217 

enriched with FSM (0.14 mM C) and amended with MPTA.  MPTA was dissolved in 218 

methanol and added to ASW at a final concentration of 100 μM.  The same volume of 219 

methanol was added to cultures as negative control without MPTA.  These cultures were 220 

incubated at 22ºC under continuous white light (approximately 150 μmol of photons m-2 s-1) 221 

or in the darkness.  The cultures were performed in triplicate.  Bacterial cell density was 222 

measured every 2 days by the direct counting method with epifluorescence microscope 223 

described above.  Additionally, colony-forming unit (cfu) was also monitored after spread 224 

100 μl of cultures on Marine Agar 2216 (Difco) and incubation at 22ºC for 48 hr.  MPTA 225 

was a generous gift of Francis X. (Buddy) Cunningham (University of Maryland, USA). 226 
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 To determine the importance of sodium pumping in light-driven growth of PR-227 

containing marine flavobacteria, MED134 was grown in ASW with 2-n-heptyl-4-228 

hydroxyquinoline N-oxide (HQNO) (Enzo Life Sciences).  HQNO is known to be a specific 229 

inhibitor of the electron-transport-linked Na+-translocating NQR enzyme complex (Tokuda 230 

and Unemoto, 1982; Häse and Mekalanos, 1999).  MED134 was incubated in ASW enriched 231 

with DL-alanine (0.70 mM C), supplemented with trace element solution (Futamata et al., 232 

2009), and amended with HQNO at a final concentration of 10 μM.  DL-alanine was selected 233 

as carbon source for the bacterial cultivation, since transcriptomic analyses demonstrated 234 

significant over representation of Na+/alanine symporters in the presence of light (see Results 235 

and discussion).  HQNO was prepared in ethanol.  The same volume of ethanol was added to 236 

culture as negative control without HQNO.  These cultures were incubated at 22ºC under 237 

continuous white light or in the dark.  The cultures were performed in triplicate.  Bacterial 238 

cell densities were measured every 2 days by the direct count and plate count method 239 

described above. 240 

 241 

 242 

Results and discussion 243 

Cultivation in light and darkness 244 

Dokdonia sp. MED134 exposed to light reached a maximal abundance of  1.1 × 105 cell ml-1 245 

in unamended artificial seawater (ASW) (DOC, 0.05 mM C), 1.4 × 106 cell ml-1 in ASW 246 

enriched with 0.14 mM C, and 1.1 × 107 cell ml-1 in ASW enriched to 0.39 mM C (Figure 1).  247 

In contrast, dark-incubated cultures remained below 5.0 × 104 cells ml-1 in unenriched ASW.  248 

In nutrient enriched ASW media, MED134 grew moderately in the dark, but the cell yields 249 

were much lower compared to cultures grown in the light.  Light/dark ratios of cell yields 250 

ranged from 1.6 to 4.6 at the peak of the growth curves.  Growth rates in ASW containing 251 
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0.14 mM C were 0.69 day-1 in the illuminated culture (logarithmic growth phase, 1.5 to 5 252 

day), and 0.44 day-1 in the dark cultures (logarithmic growth phase, 1.5 to 4 day).  Growth 253 

rates in ASW containing 0.39 mM C were 1.17 day-1 in the light, and 1.01 day-1 in the dark 254 

(logarithmic growth phase, 0 to 4 day).  These results show the considerable influence of PR 255 

on growth rate at low carbon concentrations, and its lesser influence at higher carbon 256 

concentrations.  These findings confirm the previous work of Gómez-Consarnau et al. 257 

(2007), which showed that light has a definite positive impact on the growth of the PR-258 

containing flavobacteria grown in low carbon conditions. 259 

 260 

Transcriptome experiments 261 

For transcriptomic analyses, MED134 was grown again in ASW enriched to 0.14 mM C.  262 

Bacteria grew to 1.0 × 105 cells ml-1 for first 2 days in the dark (D2).  After 2 more days, 263 

MED134 reached 3.2 × 105 cells ml-1 in light (L2), whereas bacteria incubated in darkness 264 

remained 1.2 × 105 cells ml-1 (D4). 265 

 cDNAs synthesized from the RNA samples were pyrosequenced on the Roche 454 266 

FLX platform, yielding ≈400,000 reads per sample.  cDNA derived from intergenic regions 267 

(IGRs) accounted for 21 to 51% of the total cDNA reads (Figure 2).  Remarkably, most of 268 

reads derived from IGRs in all samples corresponded to a single gene (399 bp) encoding 269 

transfer-messenger RNA (tmRNA) (Supplementary Table S2).  tmRNA is small RNA that 270 

employs both tRNA-like and mRNA-like properties as it rescues stalled ribosomes during 271 

nutrient shortage (Gillet and Felden, 2001; Keiler, 2008; Moore and Sauer, 2007).  Since the 272 

proportions of tmRNA further increased with incubation time, the high percentage of tmRNA 273 

is likely to be due to the carbon limiting growth conditions used in this experiment.  Protein-274 

encoding transcripts, identified by comparison with the annotated MED134 genome 275 

(GenBank version in December 2009), represented 38 to 61% of total cDNA reads (Figure 276 
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2). Genes with a significant change in L2/D4 ratio (q-value ≤0.05) were considered 277 

differentially expressed in the light versus the dark. Using this criteria, 601 genes in 2,944 278 

annotated protein-encoding genes were found to be differentially expressed.  Specifically, 279 

312 genes were upregulated in the light, whereas 289 genes exhibited downregulation in the 280 

light. 281 

 282 

PR and retinal biosynthetic enzymes 283 

Previous genomic analysis of MED134 revealed the presence of genes encoding PR, and 284 

crtEBIY  encoding enzymes needed to synthesize β-carotene from farnesyl diphosphate (FPP) 285 

(Gómez-Consarnau et al., 2007).  Further, a gene (blh) encoding an enzyme that converts β-286 

carotene to retinal has been also found next to the PR gene on the genome of MED134.  Our 287 

transcriptomic survey revealed that the L2/D4 ratios for the PR gene, crtEBIY and blh were 288 

elevated (Figure 3a).  In particular, statistical significance tests based on q-values showed that 289 

the PR, crtE and crtI genes were significantly upregulated in the culture exposed to light 290 

(Table 1).  In addition, hierarchical clustering of transcript abundances clustered D2 and D4 291 

together, to the exclusion of L2 (Figure 3b). This clustering pattern reflects the differential 292 

response of this PR-containing flavobacterium to light.  Gómez-Consarnau et al. (2007) 293 

demonstrated by RT-PCR that MED134 had a higher expression of PR gene in the light than 294 

in the dark.  Lami et al. (2009) also reported that marine flavobacteria and SAR11 in natural 295 

costal seawaters displayed significant high expression of PR gene in the presence of light.  296 

Our results extend these previous reports and indicate that transcription of the entire PR 297 

photosystem is upregulated in the presence of light in this flavobacterium. 298 

 The only evidence supporting the role of PR in light-stimulated growth in strain 299 

MED134 is the observation that only light corresponding to the wavelengths absorbed by PR 300 

elicited growth enhancement (Gómez-Consarnau et al., 2007).  To better define the role of 301 
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PR in light-stimulated growth in strain MED134, we performed culture experiments with 302 

MPTA, a specific inhibitor of lycopene cyclization in the retinal biosynthetic pathway 303 

(Cunningham et al., 1994; Armstrong, 1999; see Figure 3a).  First, MED134 was grown on 304 

agar plates enriched with peptone and yeast extracts with and without MPTA.  In the 305 

presence of MPTA, MED134 produced light pink colonies, whereas yellow colonies were 306 

observed on agar plates without MPTA (Figures 4a and 4b).  In general, it is known that 307 

bacterial cells accumulating β-carotene display yellow or orange colonies, whereas light pink 308 

colonies indicate accumulation of lycopene (Cunningham et al., 1994; Armstrong, 1999).  309 

Our results indicate that MPTA effectively prevented β-carotene generation, the precursor for 310 

retinal, in strain MED134.  MED134 was grown in ASW enriched to 0.14 mM C and 311 

amended with MPTA.  When strain MED134 was incubated in ASW with MPTA, bacteria 312 

grew moderately to 6.3 × 105 cells ml-1 and 4.3 × 105 cfu ml-1 in the presence of light 313 

(Figures 4c and 4d).  In contrast, MED134 incubated in ASW without MPTA in the light 314 

produced significantly higher yields (1.9 × 106 cells ml-1 and 1.5 × 106 cfu ml-1) than those in 315 

ASW with MPTA.  In culture experiments in the dark with or without MPTA, bacteria grew 316 

similarly to approximately 5.0 × 105 cells ml-1 (3.0 × 105 cfu ml-1), equivalent to the results 317 

with MPTA in the light.  The findings suggest that PR bound to retinal plays a critical role in 318 

the light-stimulated growth of the PR-containing marine flavobacteria. 319 

 320 

ATP synthetase 321 

The genome of MED134 harbors genes encoding membrane-embedded ATP synthetase, a 322 

multi-unit enzyme consisting of two large complexes.  In this study, large numbers of 323 

transcripts from ATP synthetase were identified, however, there was no significant difference 324 

in ATP synthetase transcript abundance in the light and dark cultures (Supplementary Table 325 

S3). 326 



                                                                                                                               Kimura et al. 14

 327 

Light sensors 328 

MED134 contains several gene homologs of membrane sensors known to respond to light.  329 

González et al. (2008) reported that MED134 contain genes encoding bacterial cryptochrome 330 

and several DNA photolyase/cryptochromes that belong to different gene families (DASH 331 

family, (6-4) photolyase family, and class I photolyase).  Similar genes encoding these light 332 

sensor proteins were also identified in the genome sequence of Polaribacter sp. MED152, 333 

another marine flavobacterium (González et al., 2008).  Further, MED134 has PAS and GAF 334 

domains, known to be common components of phytochromes that detect red and far-red light 335 

(Taylor and Zhulin, 1999; Anantharaman et al., 2001).  PAS domains are able to respond to 336 

oxygen levels, redox potential and light, whereas GAF domains work as phototransducers.  337 

Another gene associated with light sensing contains the BLUF domain, which specifically 338 

responds to blue light (Gomelsky and Klug, 2002).  The BLUF domain is also found in the 339 

genome of related Polaribacter sp. MED152 (González et al., 2008).  In addition to light 340 

sensors, several histidine (His) kinases, which might play important roles for secondary 341 

transduction and response regulation, are contained in the genome of MED134. 342 

 In this study, we found significant upregulation of bacterial cryptochrome and two 343 

putative DNA photolyase/cryptochrome genes under light (L2) versus dark (D4) conditions 344 

(Table 2).  In contrast, genes encoding PAS, GAF, and BLUF domains exhibited no 345 

significant difference between light and dark cultures (Supplementary Figure S1).  Of the 346 

secondary transduction enzymes, one His kinase (MED134_10396) showed very high 347 

expression rate (L2/D2 ratio, 18.3) and significant upregulation in light (Table 2).  This His 348 

kinase may therefore be involved in controlling gene expression in response to light. 349 

 350 

Central metabolic pathways 351 
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The main energy generating metabolic pathways of MED134 identified by genome analyses 352 

were glycolysis, the pentose phosphate cycle, and the TCA cycle (Gómez-Consarnau et al., 353 

2007).  Several genes encoding enzymes working in the central metabolic pathways were 354 

significantly induced in culture exposed to light (Supplementary Table S4).  In particular, 355 

genes encoding fructose-bisphosphatase (fbp) in glycolysis, glucoce-6-phosphate 356 

dehydrogenase (zwf) and phosphogluconate dehydrogenase (gnd) in pentose phosphate cycle, 357 

and succinate dehydrogenase (sdhABC) and fumarate hydratase (fumC) in TCA cycle 358 

exhibited significant upregulation in light.  In addition, hierarchical clustering of transcript 359 

abundances clustered D2 and L2 together, to the exclusion of D4 (Supplementary Figure S2). 360 

This clustering pattern may reflect the increased levels of carbon available in the D2 culture, 361 

and the additional energy source (light) available in the L2 culture, relative to the D4 culture. 362 

Hence, the expression pattern of enzymes of the central metabolic pathways may reflect the 363 

differential nutrient and energy availability between the different treatments. 364 

 MED134 also harbors genes encoding pyruvate carboxylase (pycA) and 365 

phosphoenolpyruvate (PEP) carboxylase (ppc) that function in anaplerotic metabolism and 366 

that are associated with carbon fixation (González et al., 2008).  Pyruvate carboxylase 367 

generates oxaloacetate from bicarbonate and pyruvate, whereas PEP carboxylase synthesizes 368 

oxaloacetate from bicarbonate and PEP (Attwood and Wallace, 2002; Izui et al., 2004; 369 

Jitrapakdee et al., 2008).  The transcript abundance of pyruvate carboxylase and PEP 370 

carboxylase were significantly downregulated in the light, compared to that in the dark 371 

(Supplementary Table S5).  In contrast, SulP-type bicarbonate transporter and carbonic 372 

anhydrase, which is known to interconvert CO2 and bicarbonate, were not significant 373 

different between L2 and D4.  Although Polaribacter sp. MED152 has been reported to fix 374 

more bicarbonate in the light than in the darkness (González et al., 2008), our findings 375 

indicate that in MED134 CO2 incorporation via pyruvate carboxylase and PEP carboxylase 376 
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may be equally important for anaplerotic carbon replenishment under both dark and light 377 

growth conditions. 378 

 379 

Transporters and electron transport chain 380 

Membrane transporters play critical roles in uptake of essential nutrients and minerals.  The 381 

genome of MED134 contains relatively low numbers of genes encoding membrane 382 

transporters, compared to other marine bacteria.  Transcriptomic analyses revealed that two 383 

predicted Na+/alanine symporters (MED134_02355, MED134_14567) were significantly 384 

upregulated in the light (Table 1 and Supplementary Figure S3).  Further, a Na+/phosphate 385 

symporter (MED134_11180) also exhibited significant upregulation in the light.  386 

Transcriptome analyses also indicated significant upregulation of Na+-translocating NQR, 387 

succinate dehydrogenase, and cytochrome c oxidase in the light (Table 1 and Supplementary 388 

Figure S4).  These results suggested the potential importance of the sodium ion gradient for 389 

transport fractions in the light, and the potential of indirect light-stimulation of sodium pump 390 

activities via the light-driven proton gradient (see Supplementary Figure S5). 391 

 To test the importance of sodium ion exchange in light-stimulated physiology of 392 

MED134, we performed growth experiments with HQNO, a specific inhibitor of Na+-393 

translocating NQR (Tokuda and Unemoto, 1982; Häse and Mekalanos, 1999).  MED134 was 394 

grown in ASW amended with and without HQNO.  For these experiments, DL-alanine was 395 

chosen as carbon source, because of the high expression levels of Na+/alanine symporter we 396 

observed in cultures grown in the light.  In cultures without HQNO, MED134 increased to 397 

2.6 × 105 cells ml-1 (2.3 × 105 cfu ml-1) in the light and 1.3 × 105 cells ml-1 (1.1 × 105 cfu ml-398 

1) in the dark (Figure 5) when grown on DL-alanine.  Cell yields in cultures incubated with 399 

HQNO in the light were about 3 times less than those grown in the absence of inhibitor.  In 400 

contrast,  for cultures grown in the dark, cell yields decreased by about 1/2 in the presence of 401 
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the inhibitor, although the amount of growth on DL alanine was much lower.  These findings 402 

indicate that the Na+-translocating NQR may play a critical role in sodium pumping in light-403 

stimulated growth, and that active PR photophysiology greatly enhances the ability of these 404 

flavobacteria to grow on DL alanine. 405 

 406 

 407 

Conclusion 408 

In this study, we characterized gene expression patterns associated with the higher growth 409 

rates and cell yields observed in flavobacterium strain MED134 in carbon-limited media, 410 

when grown in the light.  Among protein-encoding transcripts, a number of genes were 411 

upregulated in the light, including PR, retinal biosynthetic enzymes, and several predicted 412 

light sensors (Figure 6).  Previous studies had suggested the involvement of PR in light 413 

enhanced growth, because the action spectra for this response generally matched the PR 414 

absorption spectrum.  Experiments with MPTA, a specific inhibitor of an enzyme in retinal 415 

biosynthetic pathway, confirmed the involvement of PR in the observed light-enhanced 416 

growth.  MED134 cultures grown with MPTA exhibited much lower cell yields than those 417 

without MPTA, when both were grown in the presence of light, while MPTA had no effect 418 

on MED134 grown in the dark.  Proteins involved in some central metabolic pathways, 419 

including fructose-bisphosphatase, glucoce-6-phosphate dehydrogenase, phosphogluconate 420 

dehydrogenase, succinate dehydrogenase, and fumarate hydratase, also had relatively higher 421 

expression in light than dark, suggesting an increased requirement for these enzymes during 422 

active cell growth.  Transcripts for membrane embedded ATP synthase, and pyruvate 423 

carboxylase and PEP carboxylase were well represented in both the light and dark grown 424 

cultures.  These results likely reflect a central and essential requirement for ATP synthetase 425 

and the two carboxylases, in both the light and the dark. 426 
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 Of the membrane transporters, Na+/phosphate symporter and Na+/alanine symporter 427 

exhibited particularly significant upregulation in cultures exposed to light.  The Na+-428 

translocating NQR linked electron transport chain also exhibited significantly greater 429 

expression levels in the light. The gene expression levels of other sodium pumps however, 430 

including the Na+/H+ antiporter and the Na+ efflux pump, did not appear significantly 431 

different between the L2 and D4 treatments (Figure 6).  These results indicate the potential 432 

importance of these symporters,  coupled with the central role of NQR in driving energy-433 

requiring nutrient transport via its maintenance of the sodium ion gradient.  Culture 434 

experiments using a specific inhibitor of Na+-translocating NQR, HQNO, also suggested the 435 

importance of the sodium ion gradient for MED134 growth, and indicated that sodium 436 

pumping via Na+-translocating NQR is critical metabolic process for the light-stimulated 437 

growth of PR-containing marine flavobacteria, in addition to proton pumping via retinal-438 

bound PR.  In total, our findings indicate a direct role for retinal-bound PR in light-enhanced 439 

growth in Dokdonia strain MED134.  Furthermore, an important role for H+/Na+ ion 440 

exchange, and transport processes that utilize energy derived from the sodium ion gradient, 441 

appear particularly important for the photoheterotrophic growth in this flavobacterium strain.442 
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Figure Legends 553 

Figure 1  Growth of MED134 incubated in the light or in the dark.  MED134 was grown in 554 

unenriched ASW (0.05 mM C) (a), in ASW enriched to 0.14 mM C (b), and in ASW 555 

enriched to 0.39 mM C (c).  The cultures were incubated under continuous white light (○), or 556 

in the darkness (●).  Errors bars denote standard deviation for triplicate. 557 

 558 

Figure 2  Inventory of RNAs from cultures in the microbial transcriptomic datasets.  MED 559 

134 was first incubated in ASW enriched to 0.14 mM C in the dark for first 2 days (D2).  560 

Then culture was split in two flasks, with one incubated in the light (L2), and the other in the 561 

dark (D4),  for 2 more days.  Numbers in the pie charts represent the percentage of total 562 

cDNA reads in each transcriptomic dataset.  aSubtraction of 16S and 23S rRNAs were 563 

performed after total RNA extraction. 564 

 565 

Figure 3  Transcriptomic analyses of proteorhodopsin and retinal biosynthetic genes.  (a) 566 

Retinal biosynthetic pathway.  The colors indicate the L2/D4 ratio of retinal biosynthetic 567 

enzymes.  The ratio was calculated based on abundance of reads for each specific gene, 568 

normalized by the total number of protein-encoding reads for each sample.  (b) Cluster 569 

analysis of the relative abundance of PR and retinal biosynthetic enzymes.  Hierarchical 570 

clustering was performed based on the number of cDNA reads, normalized to the total 571 

number of protein-encoding cDNAs in each sample, using a Pearson correlation.  The heat 572 

map shows relative difference of transcript abundance in each sample (red indicates high 573 

Pearson correlation; white indicates intermediate; blue indicates low).  The numbers of 574 

cDNA read are summarized in Table 1.  IPP, isopentenyl pyrophosphate; DMAPP, 575 

dimethylallyl pyrophosphate; FPP, farnesyl pyrophosphate; GGPP, geranylgeranyl 576 

pyrophosphate; MPTA, 2-(4-methylphenoxy)triethylamine hydrochloride. 577 
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 578 

Figure 4  Colony image and growth of MED134 in culture experiments with a specific 579 

inhibitor of lycopene cyclization, 2-(4-methylphenoxy)triethylamine hydrochloride (MPTA).  580 

(a and b) Colony morphology of MED134 on Marine Agar 2216 (Difco) plate amended with 581 

MPTA (a) and without MPTA (b).  (c and d) Microbial cell density in ASW enriched with 582 

peptone and yeast extracts (0.14 mM C) and amended with MPTA in culture exposed to light 583 

(△) and in the dark (▲), and in the ASW amended without MPTA in culture exposed to 584 

light (○) and in the dark (●).  Bacterial cells were counted by epifluorescence microscopy (c) 585 

and plate count method (d).  cfu, colony-forming unit. 586 

 587 

Figure 5  Growth of MED134 in cultures incubated with 2-n-heptyl-4-hydroxyquinoline N-588 

oxide (HQNO), a specific inhibitor of Na+-translocating NADH-quinone oxioreductase 589 

(NQR).  MED134 were grown in ASW enriched with DL-alanine (0.7 mM C).  Cultures 590 

were incubated in the ASW amended with HQNO in light (△) or dark (▲) and in the ASW 591 

without HQNO in light (○) or dark (●).  Bacterial cell densities were determined by 592 

epifluorescence microscopy (a) and plate count method (b).  cfu, colony-forming unit. 593 

 594 

Figure 6  Model of light-stimulated transcriptional responses in MED134.  Proton pumping 595 

processes and retinal biosynthetic pathway are shown in left, whereas central metabolic 596 

pathways, such as glycolysis, pentose phosphate cycle, and TCA cycle, are in right.  The 597 

color allows and membrane proteins indicate the value of L2/D4 ratio.  The ratio is calculated 598 

based on abundance of reads for each gene  normalized by total number of protein-encoding 599 

reads for each sample.  PR, proteorhodopsin; PP, pyrophosphatase; NQR, Na+-translocating 600 

NADH-quinone oxidoreductase; SDH, succinate dehydrogenase; Cyt, cytochrome oxidase; 601 

NHA, Na+/H+ antiporter. 602 
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D2 L2 D4
Opsin
Proteorhodopsin MED134_07119 247 1 33 5 3.92 0.0129
Retinal biosynthetic enzymes

Isopentenyl-diphosphate δ-isomerase (idi) MED134_07374 172 17 36 11 1.94 0.1568
Farnesyl-diphosphate synthase (ispA) MED134_01800 325 27 30 21 0.85 0.7416
Geranylgeranyl pyrophosphate synthase (crtE) MED134_07466 324 53 77 23 1.99 0.0160
Phytoene synthetase (crtB) MED134_13071 279 20 34 8 2.53 0.0660
Phytoene dehydrogenase (crtI) MED134_13076 486 37 86 20 2.56 0.0005
Lycopene cyclase (crtY) MED134_08681 403 10 10 4 1.49 0.7585

15,15'-β-carotene dioxygenase (blh) MED134_07114 287 2 4 1 2.38 0.8027
Transcriptional regulator, MerR family MED134_13081 309 9 22 7 1.87 0.3648
Transporters

Na+/alanine & glycine symporter MED134_02355 561 90 84 27 1.85 0.0241

Na+/alanine & glycine symporter MED134_14567 509 64 52 13 2.38 0.0243

Na+/phosphate symporter MED134_11180 745 81 64 15 2.54 0.0049
Electron transport chain

Na+-translocating NADH quinone oxidoreductase (nqrA) MED134_00295 448 713 1308 518 1.50 <0.0001

Na+-translocating NADH quinone oxidoreductase (nqrB) MED134_00300 400 406 753 268 1.67 <0.0001

Na+-translocating NADH quinone oxidoreductase (nqrC) MED134_00305 248 101 181 56 1.92 0.0001

Na+-translocating NADH quinone oxidoreductase (nqrD) MED134_00310 215 93 147 34 2.57 <0.0001

Na+-translocating NADH quinone oxidoreductase (nqrE) MED134_00315 228 73 97 38 1.52 0.1115

Na+-translocating NADH quinone oxidoreductase (nqrF) MED134_00320 435 250 485 165 1.75 <0.0001

Statistical significance between light and dark cultures was measured based on q-value (false discovery rate method).
The features with q-values ≤0.05 are significant (Storey and Tibshirani, 2003), which are underline and in bold.

Table 1  Read number and L2/D4 ratio of protein-encoding cDNA that plays a crital role in light-
stimulated growth

q-valueName L2/D4
ratio

Size
(aa)Locus tag

Read number



D2 L2 D4
Bacterial cryptochrome, DASH family MED134_10201 432 9 29 5 3.45 0.0341
DNA photolyase/cryptochrome, (6-4) photolyase family MED134_10206 511 5 22 2 6.54 0.0149
DNA photolyase/cryptochrome, (6-4) photolyase family MED134_10211 494 3 24 3 4.75 0.0244
DNA photolyase/cryptochrome,  class I photolyase MED134_14266 436 37 38 12 1.88 0.1700
PAS domain MED134_02435 1200 87 66 37 1.06 0.9091
GAF domain MED134_01075 151 53 56 37 0.90 0.8120
Phytochrome region MED134_02440 749 27 32 9 2.11 0.1574
BLUF domain MED134_02460 338 38 18 11 0.97 0.9371
Multi-sensor hybrid His kinase MED134_01400 741 109 116 37 1.86 0.0058
Two-component system sensor His kinase MED134_07876 182 11 12 12 0.59 0.4031
Sensory transduction His kinase MED134_10396 163 3 123 4 18.3 <0.0001
Sensory transduction His kinase MED134_06794 657 48 54 31 1.04 0.9371
Sensory transduction His kinase MED134_07881 470 42 29 15 1.15 0.8630

Statistical significance between light and dark cultures was measured based on q-value (false discovery rate method).
The features with q-values ≤0.05 are significant (Storey and Tibshirani, 2003), which are underline and in bold.

Table 2  Read number and L2/D4 ratio of cDNA encoding domains and peotides with a role in light
absorption and response

Name Size
(aa)

L2/D4
ratio q-valueLocus tag

Read number
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