4,599 research outputs found

    Data development for ASTM E24.06.02 round robin program on instability prediction

    Get PDF
    Basis data for use in an ASTM E24.06.02 task group round robin activity was developed. Compact specimens were made of 2024-T351, 7075-T651 aluminum alloys, and 304 stainless steel. All were 12.7 mm thick and planar dimension variables incorporated were for 1T, 2T and 4T sizes. Representative raw data for each material and specimen size are contained herein. R-curves plotted in terms of delta a physical and delta a effective are plotted for each material

    Spectrometric study of condensed phase species of thorium and palladium-based modifiers in a complex matrix for electrothermal atomic absorption spectrometry

    Get PDF
    The chemical and morphological transformations of condensed phase species of a thorium-based modifier were studied over the temperature range 200–2500 °C, without and with the presence of aluminium and silicon as matrix components, and in some instances, arsenic as an analyte element. A similar study was also conducted with palladium as the modifier, for comparison. Results were derived using scanning electron microscopy (SEM), energy dispersive (ED) X-ray spectrometry, Raman microanalysis and attenuated total reflectance (ATR) Fourier transform-infrared (FT-IR) spectrometry. Comparable results were found using pyrolytic and non-pyrolytic graphite platforms, with processes occurring at slightly higher temperatures on the pyrolytic graphite platform. With thorium as the modifier, metal oxides were the predominant species on the platform surface at relatively low temperatures (<1500 °C), whereas metal phases became prevalent at high temperatures, when thorium and aluminium tended to behave independently from one other. Some spatial variations in the composition of the salt residues on different regions of the platform were observed (from the region closest to the slot in the tube, to the region furthest from the slot). Nonetheless, thorium metal remained on the graphite platform to higher temperatures than did aluminium metal. In the presence of arsenic, the existence of mixtures of thorium and arsenic oxides, just before the appearance temperature of gas phase arsenic atoms, was confirmed by SEM studies, ED X-ray spectra and Raman microanalysis. This suggests that any modifying effect of thorium on arsenic occurs while the modifier is in the oxide phase rather than in the metal phase. The presence of silicon added as silica, did not influence significantly the thermochemical behaviour of mixtures of thorium and aluminium. However, coexistence of silicon and arsenic oxides at the appearance temperature of the atomic absorption signal of arsenic was obtained, confirming that silicon can act as an internal modifier for arsenic. In the presence of palladium, aluminium exhibited greater interaction with the modifier; consequently, aluminium metal was retained on the platform surface to higher temperatures than thorium, which could explain how interference effects of aluminium on e.g. arsenic are avoided or reduced. Similarly, there was evidence for interaction of palladium and arsenic in the reduced state. However, when aluminium and silicon were present, the transformation of the palladium oxide to the metallic state was affected, which could diminish the modifying benefits of palladium for arsenic in the presence of aluminium

    Scoping exercise on fallers’ clinics : report to the National Co-ordinating Centre for NHS Service Delivery and Organisation R & D (NCCSDO)

    Get PDF
    The National Service Framework for Older People has stated the need for fall-prevention programmes. An appraisal of fallers’ clinics launched by the National Institute for Health and Clinical Excellence (NICE) was suspended because of a lack of information regarding existing services and typology. This project aimed to determine the feasibility of conducting economic modelling to appraise fallers’ clinics. To achieve this a national survey of services and reviews of the evidence of effectiveness of various models of fallers’ clinics and screening tools were undertaken

    CA19-9 as a Potential Target for Radiolabeled Antibody-Based Positron Emission Tomography of Pancreas Cancer.

    Get PDF
    Introduction. Sensitive and specific imaging of pancreas cancer are necessary for accurate diagnosis, staging, and treatment. The vast majority of pancreas cancers express the carbohydrate tumor antigen CA19-9. The goal of this study was to determine the potential to target CA19-9 with a radiolabeled anti-CA19-9 antibody for imaging pancreas cancer. Methods. CA19-9 was quantified using flow cytometry on human pancreas cancer cell lines. An intact murine anti-CA19-9 monoclonal antibody was labeled with a positron emitting radionuclide (Iodine-124) and injected into mice harboring antigen positive and negative xenografts. MicroPET/CT were performed at successive time intervals (72 hours, 96 hours, 120 hours) after injection. Radioactivity was measured in blood and tumor to provide objective confirmation of the images. Results. Antigen expression by flow cytometry revealed approximately 1.3 × 10(6) CA19-9 antigens for the positive cell line and no expression in the negative cell line. Pancreas xenograft imaging with Iodine-124-labeled anti-CA19-9 mAb demonstrated an average tumor to blood ratio of 5 and positive to negative tumor ratio of 20. Conclusion. We show in vivo targeting of our antigen positive xenograft with a radiolabeled anti-CA19-9 antibody. These data demonstrate the potential to achieve anti-CA19-9 antibody based positron emission tomography of pancreas cancer

    The International Implications of Quality-of-Life Policing as Practiced in New York City

    Get PDF
    The New York City Police Department (NYPD) has made enforcement of laws against disorder and quality-of-life offenses a central part of its policing strategy. Concomitantly, New York City (NYC) experienced a renaissance in orderliness, cleanliness, tourism, real estate value, and crime reduction, although other problems such as poverty, unemployment, drug abuse, racial tensions, and homelessness persist. This paper examines quality-of-life policing practices in NYC, describes the philosophical underpinnings, explores the critical response to the program, and presents lessons of potential relevance to other policing organizations in the USA and around the world

    Zebra Mussels Affect Benthic Predator Foraging Success

    Get PDF
    The introduction of zebra mussels (Dreissena spp.) to North America has resulted in dramatic changes to the complexity of benthic habitats. Changes in habitat complexity may have profound effects on predator-prey interactions in aquatic communities. Increased habitat complexity may affect prey and predator dynamics by reducing encounter rates and foraging success. Zebra mussels form thick contiguous colonies on both hard and soft substrates. While the colonization of substrata by zebra mussels has generally resulted in an increase in both the abundance and diversity of benthic invertebrate communities, it is not well known how these changes affect the foraging efficiencies of predators that prey on benthic invertebrates. We examined the effect of zebra mussels on the foraging success of four benthic predators with diverse prey-detection modalities that commonly forage in soft substrates: slimy sculpin (Cottus cognatus), brown bullhead ( Ameirus nebulosus), log perch (Percina caprodes), and crayfish (Orconectes propinquus). We conducted laboratory experiments to assess the impact of zebra mussels on the foraging success of predators using a variety of prey species. We also examined habitat use by each predator over different time periods. Zebra mussel colonization of soft sediments significantly reduced the foraging efficiencies of all predators. However, the effect was dependent upon prey type. All four predators spent more time in zebra mussel habitat than in either gravel or bare sand. The overall effect of zebra mussels on benthic-feeding fishes is likely to involve a trade-off between the advantages of increased density of some prey types balanced against the reduction in foraging success resulting from potential refugia offered in the complex habitat created by zebra mussels

    The future of Earth observation in hydrology

    Get PDF
    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically of the order of 1 billion dollars per satellite and with concept-to-launch timelines of the order of 2 decades (for new missions). More recently, the proliferation of smart-phones has helped to miniaturize sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3-5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist a decade ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-metre resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense other hydrologically important variables such as channel depths using commercially available wireless devices. Global internet access is being pursued via high-altitude balloons, solar planes, and hundreds of planned satellite launches, providing a means to exploit the "internet of things" as an entirely new measurement domain. Such global access will enable real-time collection of data from billions of smartphones or from remote research platforms. This future will produce petabytes of data that can only be accessed via cloud storage and will require new analytical approaches to interpret. The extent to which today's hydrologic models can usefully ingest such massive data volumes is unclear. Nor is it clear whether this deluge of data will be usefully exploited, either because the measurements are superfluous, inconsistent, not accurate enough, or simply because we lack the capacity to process and analyse them. What is apparent is that the tools and techniques afforded by this array of novel and game-changing sensing platforms present our community with a unique opportunity to develop new insights that advance fundamental aspects of the hydrological sciences. To accomplish this will require more than just an application of the technology: in some cases, it will demand a radical rethink on how we utilize and exploit these new observing systems
    corecore