68 research outputs found

    Rapid size change associated with intra-island evolutionary radiation in extinct Caribbean "island-shrews"

    Get PDF
    Background: The Caribbean offers a unique opportunity to study evolutionary dynamics in insular mammals. However, the recent extinction of most Caribbean non-volant mammals has obstructed evolutionary studies, and poor DNA preservation associated with tropical environments means that very few ancient DNA sequences are available for extinct vertebrates known from the region’s Holocene subfossil record. The endemic Caribbean eulipotyphlan family Nesophontidae (“island-shrews”) became extinct ~ 500 years ago, and the taxonomic validity of many Nesophontes species and their wider evolutionary dynamics remain unclear. Here we use both morphometric and palaeogenomic methods to clarify the status and evolutionary history of Nesophontes species from Hispaniola, the second-largest Caribbean island. Results: Principal component analysis of 65 Nesophontes mandibles from late Quaternary fossil sites across Hispaniola identified three non-overlapping morphometric clusters, providing statistical support for the existence of three sizedifferentiated Hispaniolan Nesophontes species. We were also able to extract and sequence ancient DNA from a ~ 750-yearold specimen of Nesophontes zamicrus, the smallest non-volant Caribbean mammal, including a whole-mitochondrial genome and partial nuclear genes. Nesophontes paramicrus (39-47 g) and N. zamicrus (~ 10 g) diverged recently during the Middle Pleistocene (mean estimated divergence = 0.699 Ma), comparable to the youngest species splits in Eulipotyphla and other mammal groups. Pairwise genetic distance values for N. paramicrus and N. zamicrus based on mitochondrial and nuclear genes are low, but fall within the range of comparative pairwise data for extant eulipotyphlan species-pairs. Conclusions: Our combined morphometric and palaeogenomic analyses provide evidence for multiple co-occurring species and rapid body size evolution in Hispaniolan Nesophontes, in contrast to patterns of genetic and morphometric differentiation seen in Hispaniola’s extant non-volant land mammals. Different components of Hispaniola’s mammal fauna have therefore exhibited drastically different rates of morphological evolution. Morphological evolution in Nesophontes is also rapid compared to patterns across the Eulipotyphla, and our study provides an important new example of rapid body size change in a small-bodied insular vertebrate lineage. The Caribbean was a hotspot for evolutionary diversification as well as preserving ancient biodiversity, and studying the surviving representatives of its mammal fauna is insufficient to reveal the evolutionary patterns and processes that generated regional diversity

    A meta-analytic review of stand-alone interventions to improve body image

    Get PDF
    Objective Numerous stand-alone interventions to improve body image have been developed. The present review used meta-analysis to estimate the effectiveness of such interventions, and to identify the specific change techniques that lead to improvement in body image. Methods The inclusion criteria were that (a) the intervention was stand-alone (i.e., solely focused on improving body image), (b) a control group was used, (c) participants were randomly assigned to conditions, and (d) at least one pretest and one posttest measure of body image was taken. Effect sizes were meta-analysed and moderator analyses were conducted. A taxonomy of 48 change techniques used in interventions targeted at body image was developed; all interventions were coded using this taxonomy. Results The literature search identified 62 tests of interventions (N = 3,846). Interventions produced a small-to-medium improvement in body image (d+ = 0.38), a small-to-medium reduction in beauty ideal internalisation (d+ = -0.37), and a large reduction in social comparison tendencies (d+ = -0.72). However, the effect size for body image was inflated by bias both within and across studies, and was reliable but of small magnitude once corrections for bias were applied. Effect sizes for the other outcomes were no longer reliable once corrections for bias were applied. Several features of the sample, intervention, and methodology moderated intervention effects. Twelve change techniques were associated with improvements in body image, and three techniques were contra-indicated. Conclusions The findings show that interventions engender only small improvements in body image, and underline the need for large-scale, high-quality trials in this area. The review identifies effective techniques that could be deployed in future interventions

    Tonic Shock Induces Detachment of Giardia lamblia

    Get PDF
    The single-celled organism Giardia lamblia colonizes the small intestine of a wide variety of hosts, including humans. Giardiasis infections can cause severe gastrointestinal symptoms and pose a major health concern in the developing world. Giardia are known to attach robustly to a variety of surfaces, but the conditions that influence this attachment are not known. In this study, we examined the behavior of attached Giardia parasites exposed to rapid changes in solution properties, like those Giardia might encounter in the intestine. After systematically varying media concentration and composition, we found that only one solution property caused rapid detachment of Giardia cells: tonicity, which is a measure of the total concentration of solutes in the solution that are unable to pass through a semi-permeable membrane (here, the cell membrane of Giardia). We found similar results for Giardia initially attached to monolayers of intestinal cells. Giardia cells remaining attached after a change in tonicity are able to adapt to the change, highlighting the general ability of this organism to weather normal changes in the intestinal environment. We propose that Giardia's susceptibility to large changes in tonicity could be explored as a possible new route for treatment of giardiasis

    Convergent evolution of pain-inducing defensive venom components in spitting cobras

    Get PDF
    Convergent evolution provides insights into the selective drivers underlying evolutionary change. Snake venoms, with a direct genetic basis and clearly defined functional phenotype, provide a model system for exploring the repeated evolution of adaptations. While snakes use venom primarily for predation, and venom composition often reflects diet specificity, three lineages of cobras have independently evolved the ability to spit venom at adversaries. Using gene, protein, and functional analyses, we show that the three spitting lineages possess venoms characterized by an up-regulation of phospholipase A2 (PLA2) toxins, which potentiate the action of preexisting venom cytotoxins to activate mammalian sensory neurons and cause enhanced pain. These repeated independent changes provide a fascinating example of convergent evolution across multiple phenotypic levels driven by selection for defense

    Identification of molecular signatures specific for distinct cranial sensory ganglia in the developing chick

    Get PDF
    Background The cranial sensory ganglia represent populations of neurons with distinct functions, or sensory modalities. The production of individual ganglia from distinct neurogenic placodes with different developmental pathways provides a powerful model to investigate the acquisition of specific sensory modalities. To date there is a limited range of gene markers available to examine the molecular pathways underlying this process. Results Transcriptional profiles were generated for populations of differentiated neurons purified from distinct cranial sensory ganglia using microdissection in embryonic chicken followed by FAC-sorting and RNAseq. Whole transcriptome analysis confirmed the division into somato- versus viscerosensory neurons, with additional evidence for subdivision of the somatic class into general and special somatosensory neurons. Cross-comparison of distinct ganglia transcriptomes identified a total of 134 markers, 113 of which are novel, which can be used to distinguish trigeminal, vestibulo-acoustic and epibranchial neuronal populations. In situ hybridisation analysis provided validation for 20/26 tested markers, and showed related expression in the target region of the hindbrain in many cases. Results One hundred thirty-four high-confidence markers have been identified for placode-derived cranial sensory ganglia which can now be used to address the acquisition of specific cranial sensory modalities.</p

    Synthetic lethal therapies for cancer: what's next after PARP inhibitors?

    Get PDF
    The genetic concept of synthetic lethality has now been validated clinically through the demonstrated efficacy of poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of cancers in individuals with germline loss-of-function mutations in either BRCA1 or BRCA2. Three different PARP inhibitors have now been approved for the treatment of patients with BRCA-mutant ovarian cancer and one for those with BRCA-mutant breast cancer; these agents have also shown promising results in patients with BRCA-mutant prostate cancer. Here, we describe a number of other synthetic lethal interactions that have been discovered in cancer. We discuss some of the underlying principles that might increase the likelihood of clinical efficacy and how new computational and experimental approaches are now facilitating the discovery and validation of synthetic lethal interactions. Finally, we make suggestions on possible future directions and challenges facing researchers in this field

    Species-specific use of allochthonous resources by ground beetles (Carabidae) at a river-land interface

    Get PDF
    A variety of organisms mediate river-terrestrial linkages through spatial subsidies. However, most empirical studies have classified organisms rather broadly (e.g., by functional group or taxonomic family) and have dismissed species-level linkages at the interface of ecosystems. Here, we show how allochthonous resource use varies among taxonomically similar species of ground beetles (family Carabidae) across seasons (June-September). We investigated seasonal shifts in the distribution of five beetle species and their dietary responses to spatial subsidies (emerging aquatic insects) in a Japanese braided river. Despite their taxonomic closeness, the ground beetles showed species-specific responses to spatial subsidies, and beetle distribution patterns tended to coincide with their diets. Overall, 1-56% of ground beetle diets were derived from aquatic prey. One genus (Bembidion spp.) mainly consumed aquatic prey, while three species fed primarily on terrestrial prey across all seasons. However, one species (Lithochlaenius noguchii) showed shifts in its diet from aquatic to terrestrial prey according to subsidy availability. The observed variation in allochthonous resource use was likely related to species-specific foraging modes, physiological tolerance to dry conditions, and interspecific competition. Our findings suggest that considering species-specific interactions is necessary to fully understand cross-system interactions and recipient food-web dynamics
    • 

    corecore