29 research outputs found

    The Mitochondrial Apoptotic Effectors BAX/BAK Activate Caspase-3 and -7 to Trigger NLRP3 Inflammasome and Caspase-8 Driven IL-1beta Activation

    Get PDF
    Published: November 27, 2018Intrinsic apoptosis resulting from BAX/BAK-mediated mitochondrial membrane damage is regarded as immunologically silent. We show here that in macrophages, BAX/BAK activation results in inhibitor of apoptosis (IAP) protein degradation to promote caspase-8-mediated activation of IL-1β. Furthermore, BAX/BAK signaling induces a parallel pathway to NLRP3 inflammasome-mediated caspase-1-dependent IL-1β maturation that requires potassium efflux. Remarkably, following BAX/BAK activation, the apoptotic executioner caspases, caspase-3 and -7, act upstream of both caspase-8 and NLRP3-induced IL-1β maturation and secretion. Conversely, the pyroptotic cell death effectors gasdermin D and gasdermin E are not essential for BAX/BAK-induced IL-1β release. These findings highlight that innate immune cells undergoing BAX/BAK-mediated apoptosis have the capacity to generate pro-inflammatory signals and provide an explanation as to why IL-1β activation is often associated with cellular stress, such as during chemotherapy.James E. Vince, Dominic De Nardo, Wenqing Gao, Angelina J. Vince, Cathrine Hall, Kate McArthur, Daniel Simpson, Swarna Vijayaraj, Lisa M. Lindqvist, Philippe Bouillet, Mark A. Rizzacasa, Si Ming Man, John Silke, Seth L. Masters, Guillaume Lessene, David C.S. Huang, Daniel H.D. Gray, Benjamin T. Kile, Feng Shao, and Kate E. Lawlo

    Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials

    Get PDF
    Stromal tumor-infiltrating lymphocytes (sTILs) are a potential predictive biomarker for immunotherapy response in metastatic triple-negative breast cancer (TNBC). To incorporate sTILs into clinical trials and diagnostics, reliable assessment is essential. In this review, we propose a new concept, namely the implementation of a risk-management framework that enables the use of sTILs as a stratification factor in clinical trials. We present the design of a biomarker risk-mitigation workflow that can be applied to any biomarker incorporation in clinical trials. We demonstrate the implementation of this concept using sTILs as an integral biomarker in a single-center phase II immunotherapy trial for metastatic TNBC (TONIC trial, NCT02499367), using this workflow to mitigate risks of suboptimal inclusion of sTILs in this specific trial. In this review, we demonstrate that a web-based scoring platform can mitigate potential risk factors when including sTILs in clinical trials, and we argue that this framework can be applied for any future biomarker-driven clinical trial setting

    Oncogenic Signaling Pathways in The Cancer Genome Atlas

    Get PDF
    Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFb signaling, p53 and beta-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy

    Enabling genomic island prediction and comparison in multiple genomes to investigate bacterial evolution and outbreaks.

    Get PDF
    Outbreaks of virulent and/or drug-resistant bacteria have a significant impact on human health and major economic consequences. Genomic islands (GIs; defined as clusters of genes of probable horizontal origin) are of high interest because they disproportionately encode virulence factors, some antimicrobial-resistance (AMR) genes, and other adaptations of medical or environmental interest. While microbial genome sequencing has become rapid and inexpensive, current computational methods for GI analysis are not amenable for rapid, accurate, user-friendly and scalable comparative analysis of sets of related genomes. To help fill this gap, we have developed IslandCompare, an open-source computational pipeline for GI prediction and comparison across several to hundreds of bacterial genomes. A dynamic and interactive visualization strategy displays a bacterial core-genome phylogeny, with bacterial genomes linearly displayed at the phylogenetic tree leaves. Genomes are overlaid with GI predictions and AMR determinants from the Comprehensive Antibiotic Resistance Database (CARD), and regions of similarity between the genomes are also displayed. GI predictions are performed using Sigi-HMM and IslandPath-DIMOB, the two most precise GI prediction tools based on nucleotide composition biases, as well as a novel blast-based consistency step to improve cross-genome prediction consistency. GIs across genomes sharing sequence similarity are grouped into clusters, further aiding comparative analysis and visualization of acquisition and loss of mobile GIs in specific sub-clades. IslandCompare is an open-source software that is containerized for local use, plus available via a user-friendly, web-based interface to allow direct use by bioinformaticians, biologists and clinicians (at https://islandcompare.ca)

    Combined BRAF, MEK, and CDK4/6 inhibition depletes intratumoral immune-potentiating myeloid populations in melanoma

    No full text
    Combined inhibition of BRAF, MEK, and CDK4/6 is currently under evaluation in clinical trials for patients with melanoma harboring a BRAF(V600) mutation. While this triple therapy has potent tumor-intrinsic effects, the impact of this combination on antitumor immunity remains unexplored. Here, using a syngeneic Braf(V600E)Cdkn2a(−/−)Pten(−/−) melanoma model, we demonstrated that triple therapy promoted durable tumor control through tumor-intrinsic mechanisms and promoted immunogenic cell death and T-cell infiltration. Despite this, tumors treated with triple therapy were unresponsive to immune checkpoint blockade (ICB). Flow cytometric and single-cell RNA sequencing analyses of tumor-infiltrating immune populations revealed that triple therapy markedly depleted proinflammatory macrophages and cross-priming CD103⁺ dendritic cells, the absence of which correlated with poor overall survival and clinical responses to ICB in patients with melanoma. Indeed, immune populations isolated from tumors of mice treated with triple therapy failed to stimulate T-cell responses ex vivo. While combined BRAF, MEK, and CDK4/6 inhibition demonstrates favorable tumor-intrinsic activity, these data suggest that collateral effects on tumor-infiltrating myeloid populations may impact antitumor immunity. These findings have important implications for the design of combination strategies and clinical trials that incorporate BRAF, MEK, and CDK4/6 inhibition with immunotherapy for the treatment of patients with melanoma.Emily J. Lelliott, Stefano Mangiola, Kelly M. Ramsbottom, Magnus Zethoven, Lydia Lim, Peter K.H. Lau, Amanda J. Oliver, Luciano G. Martelotto, Laura Kirby, Claire Martin, Riyaben P. Patel, Alison Slater, Carleen Cullinane, Anthony T. Papenfuss, Nicole M. Haynes, Grant A. McArthur, Jane Oliaro, and Karen E. Sheppar
    corecore