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SUMMARY

Genetic alterations in signaling pathways that control
cell-cycle progression, apoptosis, and cell growth
are common hallmarks of cancer, but the extent,
mechanisms, and co-occurrence of alterations in
these pathways differ between individual tumors
and tumor types. Using mutations, copy-number
changes, mRNA expression, gene fusions and DNA
methylation in 9,125 tumors profiled by The Cancer
Genome Atlas (TCGA), we analyzed the mechanisms
and patterns of somatic alterations in ten canonical
pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-
Kinase/Akt, RTK-RAS, TGFb signaling, p53 and
b-catenin/Wnt. We charted the detailed landscape
of pathway alterations in 33 cancer types, stratified
into 64 subtypes, and identified patterns of co-occur-
rence and mutual exclusivity. Eighty-nine percent of
tumors had at least one driver alteration in these
pathways, and 57% percent of tumors had at least
This is an open access article under the CC BY-N
one alteration potentially targetable by currently
available drugs. Thirty percent of tumors had multi-
ple targetable alterations, indicating opportunities
for combination therapy.

INTRODUCTION

Cancer is a disease in which cells have acquired the ability to

divide and grow uncontrollably (Hanahan and Weinberg, 2000,

Hanahan and Weinberg, 2011), usually through genetic alter-

ations in specific genes. Advances in DNA sequencing over the

past decade have made it possible to systematically study these

genetic changes, and we now have a better understanding of the

commonly involved processes and signaling pathways (Garr-

away and Lander, 2013; Vogelstein et al., 2013). Asmore genetic

alterations become targetable by specific drugs, DNA

sequencing is becoming part of routine clinical care (Hartmaier

et al., 2017; Schram et al., 2017; Sholl et al., 2016; Zehir et al.,

2017). However, there is considerable variation in the genes

and pathways altered across different tumor types and individual

tumor samples, and a complete understanding of the genes and
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pathways altered in all cancer types is essential to identify poten-

tial therapeutic options and vulnerabilities.

Several important signaling pathways have been identified

as frequently genetically altered in cancer, including the RTK/

RAS/MAP-Kinase (hereafter also called RTK-RAS for brevity)

pathway, PI3K/Akt signaling, and others (Vogelstein and Kinzler,

2004). Members of these pathways and their interactions have

been captured in a number of pathway databases, such as

Pathway Commons (Cerami et al., 2011), which aggregates a

number of databases, including REACTOME (Joshi-Tope et al.,

2005) and KEGG (Kanehisa and Goto, 2000). Genes in key path-

ways are not altered at equal frequencies, with certain genes

recurrently altered and well-known in cancer, while others are

only rarely or never altered.

The detection of recurrence of rare alterations often requires

large numbers of samples (Lawrence et al., 2014). This is

confounded by the challenge to distinguish between functionally

relevant (or ‘‘driver’’ alterations) and non-oncogenic ‘‘passen-

ger’’ events (Gao et al., 2014), especially in tumor types with a

high background mutation burden (Alexandrov et al., 2013; Law-

rence et al., 2013). In these cases, many mutations, even when

they occur in cancer genes, may have no functional effect. This

topic is further addressed in Bailey et al. (Bailey et al., 2018).

Previous studies by The Cancer Genome Atlas (TCGA) have

incrementally mapped out the alteration landscape in signaling

pathways. Certain pathways, such as RTK-RAS signaling or

the cell-cycle pathway, are altered at high frequencies across

many different tumor types, whereas other pathways are altered

in more specific subsets of malignancies (e.g., alterations in the

oxidative stress response pathway are strongly associated with

squamous histologies). With >10,000 samples characterized by
322 Cell 173, 321–337, April 5, 2018
TCGA, there is an opportunity to systematically characterize and

define the alterations within well-known cancer pathways across

all tumor types and map out commonalities and differences

across pathways. The existence of shared genomic features

across histologies has been highlighted by several studies

(Ciriello et al., 2013; Hoadley et al., 2014, 2018), but these studies

traditionally used a gene-centric, as opposed to pathway-

centric, approach. Identifying relationships of inter- and intra-

pathway recurrence, co-occurrence or mutual exclusivity across

different types of cancers can help elucidate functionally relevant

mechanisms of oncogenic pathway alterations that might inform

treatment options.

Here, weworkedwithin the framework of the TCGAPanCancer

Atlas initiative (Cancer Genome Atlas Research Network et al.,

2013c) to build a uniformly processed dataset and a unified data

analysis pipeline aimed at exploring similarities and differences

in canonical cancer pathway alterations across 33 cancer types.

The focus of this effort is on mitogenic signaling pathways with

vidence for functional alterations; other oncogenic processes,

such as alterations in DNA repair (Knijnenburg et al., 2018), the

spliceosome (Seiler et al., 2018), ubiquitination (Ge et al., 2018),

or metabolic pathways (Peng et al., 2018), as well as the effects

of splicing mutations (Jayasinghe et al., 2018), are covered by

other efforts of the TCGA PanCancer Atlas project.

RESULTS

Dataset
We evaluated all samples in the TCGA PanCancer Atlas collec-

tion for which the following data types were available: somatic

mutations (whole-exome sequencing), gene expression levels

mailto:Giovanni.Ciriello@unil.ch
mailto:sander.research@gmail.com
mailto:schultz@cbio.mskcc.org
https://doi.org/10.1016/j.cell.2018.03.035


A

B

Pathway analyses in prior 
TCGA publications

Pathway databases
Scientific literature & 

review articles

Curated 
pathway templates

Data analysis and 
visualization tools:

Relevant somatic alterations 
in tabular format

Cancer Type

CDKN2A

MDM2

MDM4

TP53

16%

4%

3%

35%

Genetic Alteration Amplification Deep Deletion Truncating Mutation (putative driver) Truncating Mutation (putative passenger)

Inframe Mutation (putative driver) Inframe Mutation (putative passenger) Missense Mutation (putative driver)

Missense Mutation (putative passenger)

Recurrently altered genes
(MutSig, Lawrence et al.,

TCGA Copy-Number Portal)

Pathway-specific expert or analysis working group review

cBioPortal 

PathwayMapper

Initial definition of
pathway templates Pathway curation Final pathway templates

and analysis

SELECT

Definition of 
driver alterations

Recurrently mutated positions

Known driver mutations
TSG / OG labels

 Uniformly processed 
genomic data for 

TCGA PanCancer Atlas

IDHwt (n=92)
IDHmut-codel (n=167)

IDHmut-non-codel (n=248)

UVM (n=80)
HPV+ (n=72)

HPV- (n=415)

ACC (n=76)
PCPG (n=161)

THCA (n=480)
LUAD (n=502)

LUSC (n=464)MESO (n=82)
Normal (n=36)
Her2-enriched (n=78)
Basal (n=171)
LumB (n=197)

LumA (n=499)

POLE (n=10)
GS (n=58)
MSI (n=63)

CIN (n=328)

POLE (n=9)
EBV (n=30)
GS (n=51)
MSI (n=75)
ESCC (n=90)

CIN (n=297)

CHOL (n=36)

LIHC (n=348)

PAAD (n=152)

BLCA (n=399)

KICH (n=65)

PRAD (n=479)
Seminoma (n=62)

Non-seminoma (n=82)
Adenocarcinoma (n=43)

Squamous Carcinoma (n=229)
OV (n=177) POLE (n=49)

MSI (n=148)
CN LOW (n=147)
CN HIGH (n=163)
UCS (n=56)

SKCM (n=363)
Other (n=20)

DDLPS (n=46)
MFS/UPS (n=80)

LMS (n=83)
DLBC (n=37)
LAML (n=162)
THYM (n=119)

BRCA 

CRC

STES

HNSC

LGG

GBM (n=126)

SARC

UCEC

CESC

TGCT

Core GI

Breast

Thoracic
En

do
cr

in
e

Head & Neck

Eye

CNS

Hem./Lymph.
Soft Tissue

Skin
Gynecologic

Ur
ol

og
ic

Developmen-

tal GI tra
ct

KIRC (n=352)
KIRP (n=271)

9,125
tumors

Known functional
gene fusions/rearrangements

Epigenetic silencing calls
(RESET + manual curation)

Removal of
non-altered genes

Preliminary
pathway templates

Figure 1. TCGA PanCancer Atlas Pathways Dataset and Workflow
(A) Distribution of cancer types in the cohort, including molecular subtypes analyzed.

(B) Workflow for pathway curation and analysis. Genes were curated from previous TCGA efforts and the scientific literature. Only genes with evidence for

statistically recurrent or known driver alterations in the uniformly processed TCGA PanCancer Atlas dataset were included in the curated pathway templates.

TCGA disease codes and abbreviations: AML, acute myeloid leukemia; ACC, adrenocortical carcinoma; BRCA, breast cancer; CESC, cervical cancer; KICH,

chromophobe renal cell carcinoma; KIRC: clear cell kidney carcinoma; CRC, colorectal adenocarcinoma; SKCM, cutaneous melanoma; DLBC, diffuse large B

cell lymphoma; GBM, glioblastomamultiforme; HNSC, head and neck squamous cell carcinoma; LIHC, liver hepatocellular carcinoma; LGG, lower grade glioma;

(legend continued on next page)
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(RNA-Seq), DNA copy-number alterations (Affymetrix SNP6

arrays), and DNA methylation (Infinium arrays). This resulted in

a final set of 9,125 samples from 33 different cancer types

(Figure 1A, Table S1). In order to account for molecular or

histological subtypes, these cancer types were further stratified

into a total of 64 genomically distinct tumor subtypes, as

previously defined by the individual TCGA analysis working

groups (Figure 1A, Table S1). All genomic data and clinical

attributes per sample can be visualized through the cBioPortal

for Cancer Genomics at http://www.cbioportal.org/ (Cerami

et al., 2012).

Definition of Pathways and Alterations
We evaluated 10 canonical signaling pathways with frequent

genetic alterations, starting with key cancer genes explored in

these pathways in previous TCGA publications, and focused

on pathway members likely to be cancer drivers (functional con-

tributors) or therapeutic targets. The pathways analyzed are: (1)

cell cycle, (2) Hippo signaling, (3) Myc signaling, (4) Notch

signaling, (5) oxidative stress response/Nrf2, (6) PI-3-Kinase

signaling, (7) receptor-tyrosine kinase (RTK)/RAS/MAP-Kinase

signaling, (8) TGFb signaling, (9) p53 and (10) b-catenin/Wnt

signaling (Figures 2 and S1, Table S2). Alterations in DNA repair

pathways, epigenetic modifiers, splicing, and other cellular pro-

cesses frequently altered in cancer were not included, as these

primarily provide a background of genomic instability, rather

than specifically proliferative potential.

We began by compiling and reviewing the full set of cancer-

type specific pathway diagrams from the compendium of

TCGA manuscripts published between 2008 and 2017 (Brennan

et al., 2013; Cancer Genome Atlas Network, 2012a, 2012b,

2015a, 2015b, Cancer Genome Atlas Research Network, 2008,

2011, 2013a, 2013b, 2014a, 2014b, 2014c, 2014d, 2017a,

2017b; Davis et al., 2014), each of which included the pathway

genes found to be genetically altered in the individual tumor

types. These pathway diagrams are publicly available as pre-

defined network templates within the www.PathwayMapper.

org visualization tool (Bahceci et al., 2017). By taking the union

of pathway members across multiple TCGA studies, we pro-

duced a consolidated list of candidate member genes for each

of the ten pathways. These were then further curated based on

updated literature (including but not limited to the references in

Table S2), public pathway databases, and expert opinion

(Figure 1B).

The selected genes in the ten pathways were then assessed

for recurrent alterations within and across different tumor types

as follows (Figure 1B): Alterations of pathway members were

classified as activating events (usually specific recurrent

missense mutations, i.e., hotspot mutations, amplifications, or

fusions involving oncogenes) or inactivating events (truncating
LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; OV, ovarian s

thyroid carcinoma; STAD, stomach adenocarcinoma; PRAD, prostate adenocarc

uterine corpus endometrial carcinoma; ESCA, esophageal cancer; PCPG, pheo

MESO, mesothelioma; UVM, uveal melanoma; SARC, sarcoma; CHOL, cholan

stomach and esophageal cancer; EBV, Epstein-Barr virus; HPV, human papilloma

myxofibrosarcoma/undifferentiated pleomorphic sarcoma; ESCC, esophageal sq

MSI, microsatellite instability.
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mutations, specific recurrent missense or inframe mutations,

deletions, as well as fusions and promoter hypermethylation of

tumor suppressor genes). Individual alterations were also scruti-

nized for two features: statistical recurrence across sets of tumor

samples and presumed functional impact.We first assessed sta-

tistical recurrence using MutSigCV (Lawrence et al., 2014) for

mutations and GISTIC 2.0 (Mermel et al., 2011) for copy-number

alterations. In order to identify likely functional variants, we then

used recurrence across tumor samples at the residue level (linear

and 3Dmutational hotspots; Chang et al., 2016, 2018; Gao et al.,

2017; see STAR Methods) and prior knowledge about specific

variants via the OncoKB knowledge base, which contains infor-

mation about the oncogenic effects and treatment implications

of variants in > 400 cancer genes (Chakravarty et al., 2017a).

Epigenetic silencing through promoter DNA hypermethylation

of tumor suppressor geneswas evaluated using the RESET algo-

rithm (see STAR Methods). Gene fusions and structural rear-

rangements were called from RNA-Seq data using a combina-

tion of the STAR-Fusion, EricScript and BreakFast algorithms

(Gao et al., 2018, see STAR Methods), and likely passenger

events were filtered out based on OncoKB annotation. Through

this process, genes without evidence for recurrent or previously

known oncogenic alterations were removed from the preliminary

pathway templates. The resulting curated pathway templates

and the identified genetic alterations were vetted for functional

importance by individual pathway experts or the corresponding

TCGA PanCancer Atlas pathway-specific analysis working

groups, when applicable (Figure 1B). The pathway member

genes and the genetic alterations considered as oncogenic are

listed in Table S3, and binary genomic alteration matrices are

provided as Table S4 (see STAR Methods).

The resulting comprehensive dataset of different types of

alterations across many tumor types form the basis of all subse-

quent analyses regarding pathways, patterns of co-occurrence

and mutual exclusivity, as well as potential therapeutic implica-

tions. The simplified pathway diagrams in Figure 2 show the

most frequently altered genes in the ten pathways, including

alteration frequencies as well as the types of oncogenic alter-

ations identified in each of the genes.

Pathway Alteration Frequencies per Tumor Type
For each tumor type and subtype, we computed the fraction of

samples with at least one alteration in each of the 10 signaling

pathways (Figure 3). A tumor sample was considered as altered

in a given pathway if one ormore genes in the pathway contained

a recurrent or known driver alteration (as described above).

Despite the fact that non-recurrent and not previously known

alterations were filtered out as likely passenger events and

were not included in the alteration frequencies, the microsatellite

instability (MSI) and polymerase ε (POLE) mutant subtypes of
erous cystadenocarcinoma; KIRP, papillary kidney carcinoma; THCA, papillary

inoma; BLCA, urothelial bladder cancer; UCS, uterine carcinosarcoma; UCEC,

chromocytoma & paraganglioma; PAAD, pancreatic ductal adenocarcinoma;

giocarcinoma; TGCT, testicular germ cell cancer; THYM, thymoma; STES,

virus; DDLPS, dedifferentiated liposarcoma; LMS, leiomyosarcoma;MFS/UPS,

uamous cell carcinoma; GS, genomically stable; CIN, chromosomal instability;

http://www.cbioportal.org/
http://www.PathwayMapper.org
http://www.PathwayMapper.org


Figure 2. Curated Pathways

Pathway members and interactions in the ten selected pathways. Genes are altered at different frequencies (color intensity indicates the average frequency of

alteration within the entire dataset) by oncogenic activations (red) and tumor suppressor inactivations (blue). The types of somatic alteration considered for each

gene (copy-number alterations, mutations, fusions or epigenetic silencing) are specified using a set of four vertical dots on the left of each gene symbol. An

expanded version including cross-pathways interactions is provided as Figure S1.
gastrointestinal and uterine tumors, which had the highest muta-

tion burden, also had the highest overall frequencies of pathway

alterations. This is possibly due to the frequent inactivating

mutations introduced by the predominant mutation mechanisms
in these tumor types (Boland and Goel, 2010; Rayner

et al., 2016).

The RTK-RAS pathway was the signaling pathway with the

highest median frequency of alterations (46% of samples)
Cell 173, 321–337, April 5, 2018 325
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Figure 3. Pathway Alteration Frequencies

Fraction of altered samples per pathway and tumor subtype. Pathways are ordered by decreasing median frequency of alterations. Increasing color intensities

reflect higher percentages. Average mutation count, as well as number of unbalanced segments and fraction genome altered (two measures of the degree of

copy-number alterations) per cancer subtype are also provided. The MSI and POLE subtypes were grouped in this figure in colorectal, stomach and endometrial

cancers.
across all cancer types. The tumor subtypes with the highest

fraction of alterations in this pathway were (in descending or-

der): melanoma (SKCM, 94% altered), the genomically-stable

subtype of colorectal cancer (CRC GS, 88%), Her2-enriched

breast cancer (BRCA Her2-enriched, 82%), pancreatic cancer

(PAAD, 78%), IDH1-wild-type glioma (LGG IDHwt, 82%), lung

adenocarcinoma (LUAD, 74%), and thyroid carcinoma (THCA,

84%). Some tumor types, such as lung squamous cell carci-

noma (LUSC), EBV-positive esophagogastric cancer (STES

EBV), and non-hypermutated uterine cancer (UCEC CN high

and CN low), had high rates of alterations in the PI3K pathway,

altered in 68%, 80%, 86%, and 95% of samples, respectively.

While cell-cycle alterations were common in many tumor types,

the pathway was only rarely altered in uveal melanoma (UVM),
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thymoma (THYM), testicular cancer (TGCT), and acute myeloid

leukemia (AML). Alterations in the Wnt pathway were the most

variable across cancer types. Colorectal cancer had near uni-

versal activation of this pathway, while others, such as renal

cell carcinomas and breast cancer, had very low frequencies

of alteration in genes in this pathway. The oxidative stress

response/Nrf2 pathway had the lowest overall frequency of

alteration (1% of samples), and it was altered most frequently

in lung squamous (25% altered) and esophagogastric squa-

mous cell carcinoma (STES ESCC, 23%).

Particularly interesting gene alterations across tumor types

were observed in the RTK-RAS pathway. KRAS was the most

frequently altered gene (9% across all samples), followed by

BRAF (7%) and EGFR (4%) (Figure 4A). KRAS alterations were
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most common in pancreatic carcinoma (PAAD, 72%), genomi-

cally stable colorectal cancer (69%), and lung adenocarcinoma

(33%) (Figure 4B). BRAF alterations (predominantly known

hotspot mutations) were found in melanoma and thyroid carci-

noma, altered in 51% and 62% of samples, respectively. EGFR

alterations were predominantly found in glioblastoma (GBM,

50%), low grade glioma IDHwt (52%), HPV-negative head and

neck cancer (HNSC HPV-, 13%), lung adenocarcinoma (13%),

and esophagogastric squamous carcinoma (14%), while

ERBB2 alterations were found most commonly in breast cancer

and chromosomally unstable esophagogastric carcinoma (STES

CIN 26% altered), as well as cervical carcinoma (CESC 23%

altered). While most of the alterations described here were

previously reported as functional contributors, we identified rela-

tively rare potentially oncogenic alterations in SOS1 (<1%).

SOS1 encodes a guanine-nucleotide-exchange factor (GEF)

involved in the activation of Ras proteins. Specific germline

mutations in this gene are involved in Noonan syndrome (Lepri

et al., 2011), and recurrent somatic mutations in SOS1 were

recently identified in otherwise RAS-pathway driver-negative

lung adenocarcinoma samples (Campbell et al., 2016). We iden-

tified recurrent (hotspot) mutations (A90V/T, N233Y/S) and other

known activating mutations (M269I/V, G434R, R552S/K/G/M,

E846K) in SOS1 in a total of 1% of lung adenocarcinoma sam-

ples, 1% of uterine carcinomas, independent of subtype, and

at lower frequencies in several other cancer types (Figure 4C).

This finding suggests that rarely altered novel cancer genes

can be identified as more tumor samples are profiled. A more

detailed analysis of RAS pathway alterations is published sepa-

rately, including a description of downstream transcriptional

changes due to malfunctioning Ras signaling and results sug-

gesting that multiple hits in the Ras pathway are capable of

increasing overall Ras activity in RAS wild-type tumors (Way

et al., 2018).

The alteration frequencies of the most commonly altered

genes in the other nine pathways are in Figure 5 (full heatmaps

providing frequencies of alteration for every gene in each

pathway are in Figures S2 and S3). In some pathways, the alter-

ations are distributed over many genes (e.g., cell cycle, PI3K),

while in others the alterations mainly affect only a few genes

(Wnt, Myc, Nrf2). Several pathways are featured in more detail

as separate publications, including: (1) PI3K pathway (Zhang

et al., 2017): aberrations in the PI3K pathway were found pre-

dominantly as activating events in PIK3CA (less commonly in

PIK3CB) and inactivating events in PTEN or PIK3R1withPIK3CA

and PTEN alterations being most commonly found in head and
Figure 4. RTK-RAS Pathway Alterations

(A) Altered genes and their functional relationships in the RTK-RAS pathway. Sha

mutations or fusions, amplifications) and shades of blue indicate frequencies of ina

losses).

(B) Detailed heatmap of alteration frequencies in members of the RTK-RAS pathw

described in STARMethods. The individual gene alteration frequencies may add u

multiple alterations. Color side bars show the fraction of samples affected by eac

Top color bars show the proportion of different types of alterations for each canc

(C) Recurrent or known functional mutations in SOS1. Recurrent or knownmutatio

considered variants of unknown significance (gray). Three singleton mutations inv

A93D in CRC, and S92P in UCEC.
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neck cancer, breast cancer, gastrointestinal and gynecological

tumors; (2) TGFb pathway (personal communication): The

TGFb pathway had the highest alteration rate in pancreatic and

gastrointestinal cancers, while renal and brain cancers, among

others, had almost no alterations in this pathway; and (3) Myc

pathway (Schaub et al., 2018): Myc pathway alterations were

most common in tumor types with amplification of chromosome

8, which contains MYC, such as breast cancer, ovarian cancer

(OV), and others.

Mutual Exclusivity and Co-occurrence among Pathway
Alterations
Individual tumors typically have multiple functional alterations

affecting more than a single pathway. Some pathways may be

the target of more than one alteration per patient or distinct

pathways may be co-altered in one tumor. Patterns of mutual

exclusivity between alterations across large patient cohorts

have been associated either with functional redundancy, indi-

cating that once one occurred and is selected the second will

not provide a further selective advantage, or with synthetic

lethality, indicating that cells cannot survive with both alterations

(Etemadmoghadam et al., 2013; Mina et al., 2017). Patterns of

co-occurrence of alterations in many tumor samples, on the

other hand, indicate functional synergies and, importantly, may

reflect resistance to therapy targeting one of the alterations (Nis-

san et al., 2014)

To explore significantly co-occurring and mutually exclusive

alterations by pathway or by gene, we used the SELECTmethod

(Mina et al., 2017). Among the 410 alterations characterized, we

identified 156 pairs of mutually exclusive alterations and 117

pairs of co-occurring alterations (Table S5).

Upon mapping these significant pairs to the affected path-

ways, we found numerous mutually exclusive pairs within the

p53, cell-cycle, RAS, and PI3K pathways, suggesting that one

alteration is sufficient to functionally alter each of these pathways

or that more than one might be disadvantageous (Figure 6A). On

the other hand, the Hippo, RTK, and, to a lesser extent, Wnt

pathways often had multiple alterations per tumor sample, sug-

gesting co-occurring events that mediate synergistic activation

of each pathway (Figure 6A). The SELECTmethod also identified

several significant interdependencies between distinct path-

ways (Figure S4). For example, activation of RTKs was signifi-

cantly mutually exclusive with alterations that promote either

RAS or PI3K signaling, consistent with RTKs being able to acti-

vate either pathway without the need for additional alterations.

Notable exceptions were significant co-occurrent alterations in
des of red indicate frequencies of activating events (known or likely activating

ctivating events (known or likely inactivatingmutations or fusions, homozygous

ay. Only known or likely oncogenic alterations in each gene are considered, as

p to more than the total for each tumor type, as some tumor samples may have

h type of somatic alteration (or a combination of them) for each pathway gene.

er subtype.

ns are color-coded by tumor type, all other mutations observed in the gene are

olved in a 3D hotspot are not shown for space reasons: D89A in a UCS sample,
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Figure 5. The Most Commonly Altered Genes in Nine Signaling Pathways

Oncogenic alteration frequencies per gene and tumor subtype for the most frequently altered genes in each pathway (for RTK-RAS see Figure 4). Red: activating

events; blue: inactivating events; frequency of occurrence scale with color intensity. Last row for each pathway: overall alteration frequency of that pathway per

tumor type. The individual gene alteration frequencies may add up to more than the total for each tumor type, as some tumor samples have multiple alterations.

Color side bars show the fraction of samples affected by each type of somatic alteration (or a combination of them) for each pathway gene. Comprehensive

heatmaps with alterations for every gene in each pathway are in Figure S2 and Figure S3.
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the FGF receptors FGFR2 and FGFR3 and alterations in the PI3K

pathway (Figure S4A). The p53 and cell-cycle pathways were

frequently co-altered. Indeed, numerous alterations affecting

Rb-mediated cell-cycle control were found co-occurring with

TP53 mutations. These included amplification of CCNE1, muta-

tion of CDKN2A, RB1 loss, and amplification of CDK6 and E2F3

(Figure S4B). Interestingly, TP53 mutations were found mutually

exclusive withCDKN2A deletion, consistent with the latter invari-

ably affecting both p16, regulating the cell cycle, and ARF, pro-

moting p53-dependent apoptosis. Similarly, MDM2 amplifica-

tion was significantly mutually exclusive with RB1 and

CDKN2A loss. However, MDM2 is proximal to CDK4 in the

genome and the two genes were almost always co-amplified.

Overall, these results indicate that p53 signaling and cell-cycle

control are frequently co-altered across multiple tumor types,

either through two independent events (e.g., mutations of TP53

and RB1), or through a single alteration that is able to affect

both pathways (e.g., CDKN2A deletion).

The strongest co-occurrence among pathways was found

between alterations of the PI3K and Nrf2 pathways. Here, gain

of functionmutations and amplifications of theNFE2L2 gene (en-

coding for NRF2) significantly co-occurred with PIK3CA amplifi-

cation and tended to co-occur with PIK3CA mutations and

PIK3CB amplification (Figure 6C). Interestingly, even though

NFE2L2 amplification was largely mutually exclusive with loss

of STK11 (a.k.a. LKB1), the latter significantly co-occurred with

loss of function mutations of KEAP1, a negative regulator of

NFE2L2. Co-occurring Nrf2-PI3K pathway alterations were

most frequent in lung tumors (both squamous cell and adenocar-

cinoma), esophageal carcinomas, head and neck squamous cell

carcinoma and uterine carcinoma, independent of subtype (Fig-

ure 6D). In these tumor types, alterations in NFE2L2 and KEAP1

were recurrent and almost perfectly mutually exclusive, and they

frequently co-occurred with PIK3CA activation or STK11 loss

(Figure 6E). PI3K pathway activation promotes NRF2 accumula-

tion, which, in turn, mediates metabolic pathways required to

sustain cell proliferation and protection from reactive oxidative

species (Mitsuishi et al., 2012). NRF2 is however kept in check

by inhibitory molecules such as KEAP1 and CUL3 (Figure 6F).

The observed co-occurrence between alterations of the PI3K

and Nrf2 pathways suggests that bypassing these inhibitory

mechanisms (either by loss of KEAP1 or CUL3, or by direct

over-activation of NFE2L2) is synergistic with active PI3K
Figure 6. Co-occurrence and Mutual Exclusivity of Pathway Alteration

(A and B) Mutual exclusivity (purple) and co-occurrence (green) of gene alteration

relationships (Q value < 0.1).

(C) Co-occurrence and mutual exclusivity of individual gene alterations in the PI3

(D) Breakdown of the co-occurrence of gene alterations in the PI3K and Nrf2 path

both PI3K and Nrf2 pathways. Pathways are sorted by decreasing percentage o

(E) Details of gene alterations in select genes (PIK3CA,STK11,NFE2L2, andKEAP

exclusivity between alterations. Samples are shown from left to right, and the num

solid and dashed lines).

(F) Pathway representation of the link between the PI3K and Nrf2 pathways.

(G) Dependencies between single alterations in the RTK and RAS/ERK pathways

correction, ASC score > 0.24; Mina et al., 2017) included.

(H) Breakdown of the interactions involving EGFR amplifications and mutations,

interactions. Right side: co-occurring interactions.
signaling. Importantly, tumors with these events might depend

on NRF2 activity to tolerate PI3K pathway over-activation.

The RTK-RAS pathway contained numerous and some of the

most significantly mutually exclusively altered genes, as well as

several gene pairs that were significantly concurrently altered

(Figure 6G). In particular, alterations promoting EGFR activation

(gain of function mutations, fusion, and amplification) were

involved in the highest number of significant pairs. EGFR ampli-

fication was significantly mutually exclusive with activation of its

paralog growth factor receptor Her2 (ERBB2, Figure 6H, Box 1)

and with key drivers of the RAS pathway, including oncogenic

mutations in BRAF and KRAS as well as loss of NF1 and

RASA1 (Figure 6G). Since oncogenic EGFR can be synthetically

lethal with mutated KRAS and can mediate resistance to BRAF

inhibition in colon cancer and melanoma (Sun et al., 2014; Unni

et al., 2015), these results suggest a similar antagonistic interac-

tion with loss of NF1 or RASA1. Overall, alterations of either of

these genes were recurrent across multiple tumor types,

although almost never in the same patient (Figure 6H, Box 2).

On the other hand, in glioblastoma and IDH wild-type low grade

glioma, EGFR amplifications were highly co-occurrent with

either EGFR mutations or gene fusions (Figure 6H, Box 3) or

with focal amplifications of chromosome 4q12, where both KIT

and PDGFRA are located (Figure 6H, Box 4). It should be noted

that the majority of EGFR and PDGFRA fusions were found

coincident with amplifications in these genes, indicating that,

potentially, in these cases the same structural variant was

detected as both a copy number gain and a fusion (Alaei-Maha-

badi et al., 2016). Interestingly, co-amplification of EGFR and

PDGFRA has been proposed to be an early event in glioblastoma

development, where the two receptors heterodimerize under

EGF stimulation and respond to EGFR-inhibitors (Chakravarty

et al., 2017b).

Overall, these results provide a map of the cross-talk between

pathways and pathway components, reflecting functional inter-

actions and dependencies that could be therapeutically

exploited.

Therapeutic Actionability
DNA sequencing has been used routinely to inform the choice of

targeted therapy in specific cancer types for several years, and

some institutions now apply it more broadly to guide clinical trial

enrollment for many additional cancer types. A relatively small
s

s within pathways (A) and between pathways (B). Asterisks indicate significant

K and Nrf2 pathways.

ways by tumor subtype. Green bars: percentage of samples with alterations in

f samples with alterations in both pathways.

1) within and between PI3K and Nrf2 pathways, with co-occurrence andmutual

ber of samples in each group (bottom; note: the changing scale, indicated by

. Only the 22 alterations with at least one significant interaction (average sum

corresponding to the bounding boxes in panel G. Left side: mutually exclusive
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number of alterations in a subset of tumor types are currently

biomarkers for standard care targeted therapies, and a larger

number are potential biomarkers for investigational therapies,

some with promising clinical results. Using the OncoKB knowl-

edge base of clinically actionable alterations (Chakravarty

et al., 2017a), we systematically assessed all alterations in

each sample of each cancer type, distinguishing between stan-

dard care actionability (Levels 1 or 2) and investigational thera-

pies (Levels 3 and 4). Overall, 51% of tumors had at least one

potentially actionable alteration in the ten signaling pathways,

and 57% had at least one actionable alteration when including

genes outside of these pathways, most notably BRCA1/2 and

IDH1/2 (all numbers referenced below include these additional

genes). Apart from the Her2-enriched breast cancer samples,

most of which have a standard care targeted therapy, melanoma

was the tumor type with the highest fraction of tumors with a

Level 1 or 2A alteration (46%) (Figure 7A), mainly due to frequent

BRAF mutations (Figure 7B), followed by esophagogastric

cancers (ERBB2 amplifications). Luminal A breast cancer was

the tumor type with the highest frequency of biomarkers with

promising investigational data (Level 3A), driven by the high

prevalence of PIK3CA, AKT1 and ERBB2 mutations. Several tu-

mor types had frequent mutations that are biomarkers for drug

sensitivity in other cancer types (Level 3B), including endometrial

cancer, where PIK3CAmutations are common. Uveal melanoma

and testicular non-seminoma had the lowest percentage of

potentially targetable samples (2.5% and 8.5%, respectively);

thymoma, mesothelioma (MESO), and renal clear cell carcinoma

(KIRC) also had low frequencies of potentially actionable

alterations.

Thirty percent of tumor samples had two or more potentially

targetable alterations (Figure 7C). Among these, the MSI-H and

POLE-mutated tumor subtypes had the highest proportion of

samples with multiple potentially actionable alterations (not

considering the fact that patients with MSI-H tumors are now

eligible for immunotherapy). Other tumor types with a high fre-

quency of samples with multiple targetable alterations included

non-hypermutated endometrial cancer (64%), colorectal cancer

(37%), and breast cancer (28%).

Finally, we searched for candidate drug combinations that

could prove effective across different tumor types based on

the occurrence of actionable alterations. Hypermutant MSI and

POLE subtypes had a high fraction of samples of actionable al-

terations corresponding to various drug combinations. In other

tumor subtypes, a combination of CDK4 and MDM2 inhibitors

was the most commonly indicated combination (1% total), in

particular in dedifferentiated liposarcomas (SARC DDLPS), in
Figure 7. Therapeutic Actionability and Drug Combinations

(A) Frequencies of clinical actionability by cancer subtype, broken down by level o

highest level of evidence. Tumor type–specific samples are analyzed by variants

significance (VUS).

(B) Frequencies of actionable alterations per gene across cancer subtypes. For ge

are grouped by pathway. Six additional genes not in the ten pathways (BRCA1, B

overall frequencies.

(C) Fraction of samples with a given number of actionable alterations per tumor

(D) Frequencies of possible drug combinations indicated by the co-alteration

combinations.
which 78% of the cases had co-amplification of the two targets

(Figure 7D). By a similar consideration linking actionable alter-

ations of targets to their inhibitors, a combination of HER2 and

PI3K inhibitors might be beneficial across multiple tumor types,

in particular Her2-enriched breast cancer (17%), uterine carcino-

sarcoma (UCS, 7%), chromosomally unstable endometrioid car-

cinoma (UCECCN high, 7%), and cervical adenocarcinoma (7%)

(Figure 7D). Additional candidate combination therapies include

PI3K and MEK inhibitors in EBV+ stomach tumors (10%), CDK4

and PI3K inhibitors in glioblastoma multiforme (7%), HER2 and

MEK inhibitors in pancreatic cancer (7%), PI3K and RAF inhibi-

tors in melanoma (SKCM, 12%), and IDH and PI3K inhibitors in

IDH-mutant low grade glioma (14%) (Figure 7D). While there

are many steps from the observation of combinations of genetic

alterations to valid combination therapies, this survey indicates

the wide landscape of potential tumor-type specific novel thera-

peutic combinations that can be explored in experimental and

clinical contexts.

DISCUSSION

Signaling pathways are somatically altered in cancer at varying

frequencies and in varying combinations across different organs

and tissues, indicative of complex interplay and pathway cross-

talk. Understanding the extent, detailed mechanisms, and

co-occurrence of the oncogenic alterations in these pathways

is critical for the development of new therapeutic approaches

that can improve patient care.

Here we performed a comprehensive characterization of 10

selected signaling pathways across the 33 cancer types

analyzed by TCGA. This report constitutes the first pan-cancer

exploration that uses a uniformly processed dataset and a stan-

dardized set of pathway templates, curated through a combina-

tion of computational methods and expert review (Figures 1

and 2). The results highlight similarities and differences in fre-

quencies of alteration of individual pathways in different cancer

types and specific molecular subtypes (Figure 3). They also

underscore the potential for discovering previously uncharacter-

ized alterations in pathway genes that occur at low frequencies

and might otherwise remain statistically unnoticeable (see

SOS1, Figure 4). More generally, even though a small set of crit-

ical genes contains a very large fraction of alterations in these

pathways (Figures 4 and 5), there is a complex interplay of co-

occurring and mutually exclusive alterations within and across

pathways (Figure 6). In spite of the accumulating wealth of bio-

logical knowledge and the accepted oncogenic relevance of

these pathways, the number of currently approved biomarkers
f evidence (Levels 1–4). Samples are classified by the alteration that carries the

considered actionable, oncogenic but not actionable, or variants of unknown

neswith different levels for different alterations,multiple rows are shown. Genes

RCA2, ERCC2, IDH1, IDH2, ESR1) are included and taken into account in the

type.

of actionable variants in each tumor type for the most frequent drug class
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linked to standard of care therapies remains sparse (Figure 7),

but additional drug targets in these pathways will hopefully

emerge, and candidates for combination therapy will be

explored.

This analysis of targetable alterations only included currently

approved therapies or investigational therapies with reported

promising results. These predominantly target the RTK-RAS,

PI3K, cell-cycle, and p53 pathways. While some of these thera-

pies are standard care, many are still investigational, and further

testing is required to assess how effective different targeted

therapies will be across tumor types and in tumors with different

co-mutation spectra. Efforts are underway to develop therapies

that target additional pathways, some of which are in clinical tri-

als (Table S6) (Park and Guan, 2013), (Whitfield et al., 2017),

(Whitfield et al., 2017), (Aster and Blacklow, 2012), (Takebe

et al., 2014), (Buijs et al., 2012), (Sheen et al., 2013), (Pai et al.,

2017). In the Wnt signaling pathway, for example, two ap-

proaches involve drugs targeting PORCN, which is involved in

the processing of wingless proteins, and monoclonal antibodies

directed at proteins in the Frizzled gene family. While the Nrf2

pathway does not have therapies directly targeting any of

the pathway members included in this study, alterations in Nrf2

pathway members (NFE2L2 and KEAP1) are used as part of

the inclusion criteria in the Phase 2 trial of a TORC1/2 inhibitor.

Clinical trials involving these pathways exemplify opportunities

in precision medicine to associate additional functional alter-

ations as part of inclusion criteria (Table S6). Not all apparently

functional mutations, however, represent therapeutic targets,

as illustrated, e.g., by the unusually large number of mutations

in the MSI-H and POLE-mutated tumor subtypes, of which

only a small fraction plausibly dominate oncogenesis. The

observed co-occurrence patterns indicate a potential for combi-

nation therapies in some tumor types. The development of tar-

geted combination therapies has been challenging for several

reasons, including lack of safety data for combinations, the rela-

tively slow pace of adoption of clinically approved multi-panel

gene tests and of clinical trials testing combinations of multiple

targeted therapies. However, there is a growing corpus of prom-

ising preclinical data indicating such combinations can be effec-

tive, such as the combination of MDM2 and CDK4 inhibitors

(Laroche-Clary et al., 2017), and the combination of PI3K inhibi-

tors and HER2 inhibitors in HER2-positive/PIK3CA mutant

breast cancer patients, even when single gene-therapy ap-

proaches (e.g., PI3K monotherapy for PIK3CA mutant tumors)

have thus far not had definitive clinical impact.

Although we cover a diverse range of oncogenic processes

that spans most tissues and organ systems (Figures 1 and 3),

we did not include some tumor types in the scope of this

TCGA project, including most hematologic cancers. Further-

more, in spite of the relatively large set of samples, this effort is

still underpowered to reliably discover tumor-type specific alter-

ations that occur at very low frequencies; these will require

further exploration using larger tumor-type specific sample sets.

The original aim and scope of TCGA was to genomically

characterize primary, untreated tumors with a basic set of

genetic alterations and transcript profiles. As the program is

now completed, a future challenge is to expand these analyses

to larger sample sets, additional data types, such as metabo-
334 Cell 173, 321–337, April 5, 2018
lite levels, a wider range of epigenetic states, post-transla-

tional modifications of proteins, and to investigate metastatic

disease and genomic alterations that arise in post-treatment

samples, as well as analyzing the role of a wider range of

germline alterations and their interplay with somatic events.

These new avenues of research will benefit from pathway-level

analysis for which the templates and template curation pipe-

lines presented here constitute a promising starting point.

Similarly, as the catalog of clinically actionable alterations

continues to grow, understanding intra- and inter-pathway de-

pendencies, such as the ones considered here, will be crucial

for the development of effective combination therapies that

address or prevent resistance to initially successful single

agent therapies.

The curated pathway templates and the uniformly processed

dataset of alteration calls in 9,125 tumor samples are publicly

available (Tables S3 and S4) and can be easily accessed through

the PathwayMapper tool (http://pathwaymapper.org/), which

allows alteration frequencies to be visually overlaid on the

pathway templates; and, via the cBioPortal for Cancer Genomics

(http://www.cbioportal.org/). Thispathway landscape inTheCan-

cerGenomeAtlas ismeant to provide a valuable resource for clin-

ical oncologists, for cancer researchers and for a broad scientific

community interested in cancer precision medicine.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Raw and processed clinical,

array and sequence data.

NCI Genomic Data Commons https://portal.gdc.cancer.gov/

https://gdc.cancer.gov/about-data/publications/pancanatlas

cBioPortal: http://www.cbioportal.org

Digital Pathology Images Cancer Digital Slide Archive http://cancer.digitalslidearchive.net/

Software and Algorithms

PathwayMapper (Bahceci et al., 2017) http://www.pathwaymapper.org/

SELECT (Mina et al., 2017) http://ciriellolab.org/select/select.html

GISTIC 2.0 (Mermel et al., 2011) http://archive.broadinstitute.org/cancer/cga/gistic

MutSigCV (Lawrence et al., 2014) http://software.broadinstitute.org/cancer/software/

genepattern/modules/docs/MutSigCV

STAR-Fusion Hass et al., bioRxiv

https://doi.org/10.1101/120295

https://github.com/STAR-Fusion/STAR-Fusion/wiki

Breakfast See link https://github.com/annalam/breakfast

EricScript (Benelli et al., 2012) https://sites.google.com/site/bioericscript/

RESET (Saghafinia, Mina et al.,

manuscript under review)

http://ciriellolab.org/

Other

OncoKB (Chakravarty et al., 2017a) www.oncokb.org

CancerHotspots (Chang et al., 2016) www.cancerhotspots.org

3D Hotspots (Gao et al., 2017) www.3dhotspots.org

cBioPortal Cerami et al., 2012 http://www.cbioportal.org/

TCGA Batch Effects The University of Texas MD

Anderson Cancer Center

http://bioinformatics.mdanderson.org/tcgambatch/

Pathway Commons (Cerami et al., 2011) http://www.pathwaycommons.org/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Nikolaus

Schultz (schultz@cbio.mskcc.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

TCGA Project Management has collected necessary human subjects documentation to ensure the project complies with 45-CFR-46

(the ‘‘Common Rule’’). The program has obtained documentation from every contributing clinical site to verify that IRB approval has

been obtained to participate in TCGA. Such documented approval may include one or more of the following:

d An IRB-approved protocol with Informed Consent specific to TCGA or a substantially similar program. In the latter case, if the

protocol was not TCGA-specific, the clinical site PI provided a further finding from the IRB that the already-approved protocol is

sufficient to participate in TCGA.

d A TCGA-specific IRB waiver has been granted.

d A TCGA-specific letter that the IRB considers one of the exemptions in 45-CFR-46 applicable. The two most common exemp-

tions cited were that the research falls under 46.102(f)(2) or 46.101(b)(4). Both exempt requirements for informed consent,

because the received data and material do not contain directly identifiable private information.

d A TCGA-specific letter that the IRB does not consider the use of these data and materials to be human subjects research. This

was most common for collections in which the donors were deceased.
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Sample Selection and Exclusions
We started from the set of 11,276 patients that were included in the final whitelist for the TCGA PanCanAtlas project. We only used

samples that had available data across these four genomic platforms: mutations, copy number, DNAmethylation andmRNA expres-

sion. Our analyses excluded certain molecular platforms that have previously been used in TCGA, such as protein levels from

reverse-phase protein arrays (RPPA), microRNA, and lncRNA, as their inclusion would have implied a sharp decrease in the total

number of samples with data available across all platforms. Additionally, we excluded samples that had been flagged during pathol-

ogy review by an expert committee or due to quality control (QC) issues identified by the individual tumor-type or PanCanAtlas anal-

ysis working groups. After these filters had been applied, a total of 9,125 patients were used. Samples consisted of primary solid

tumors for a largemajority of these patients (8602/9125, 94%), plus a small number of blood tumors corresponding to the AML subset

(162/9125, 2%) and a small subset of metastatic samples from melanoma patients (361/9125, 4%).

METHOD DETAILS

Somatic mutation calling
We used version 2.8 of the mutation annotation format (MAF) file provided by the MC3 (‘‘Multi-Center Mutation Calling in Multiple

Cancers’’) group within the TCGA Network (Ellrott et al., 2018). The mutation data can be found here (https://gdc.cancer.gov/

about-data/publications/mc3-2017). We augmented this file in collaboration with the MC3 group and included all validated mutation

calls from the original AML publication. The final MAF that was used for our analyses, including OncoKB annotations, can be dow-

loaded from the TCGA PanCancer Atlas publication page (https://gdc.cancer.gov/about-data/publications/pancanatlas).

Pathway Template Curation
We manually curated the gene annotation of the ten selected pathways using the following workflow.

Selection and classification of genes in pathways

Genes were assigned to pathways based on a combined revision of pathway analyses in previous TCGA marker papers published

between 2008 and 2017, a review of the scientific literature (including but not limited to the references in Table S2) and expert

curation.We applied two different kinds of expert curation. 1) several of the pathways, such as TGF-Beta, Myc and PI3K, had specific

analysis working groups. These groups were led by experts in each pathway and published separate manuscripts (Ge et al., 2018;

Korkut et al., 2017; Peng et al., 2018; Schaub et al., 2018; Wang et al., 2018; Way and Greene, 2017). 2) for some of the pathways, we

consulted experts from outside of TCGA in order to validate or improve our curated pathway templates (e.g., Frank McCormick for

RTK-RAS or Mitchell Frederick for Notch). After the lists of pathway members were finalized, each gene was annotated as Tumor

Suppressor (TSG) or Oncogene (OG) using OncoKB and prior knowledge from the scientific literature. The final gene lists that

were selected for each pathway are provided in Table S3.

Identification of mutational hotspots

The cancer hotspots algorithm that we used identifies recurrent alterations based on a cohort of 24,592 tumor samples (Chang et al.,

2016, 2018). Identification of 3D hotspots was based on recurrence of mutations in the context of spatial neighborhoods in protein

structures (Gao et al., 2017).

Annotation of functionally relevant mutations

We used information about oncogenic and clinically actionable mutations from the OncoKB database (Chakravarty et al., 2017a),

which provides information on variants in more than 400 genes. For template curation, we used OncoKB to filter out putative

passenger mutations and copy number changes, by discarding somatic alterations that were not labeled as oncogenic, likely

oncogenic or predicted oncogenic in the database. For the analysis of therapeutic implications, we used annotations about different

levels of clinical actionability as described in the text. These had originally been compiled and curated by OncoKB by combining a

diverse set of sources, including FDA-, NCCN- and other guidelines, ClinicalTrials.gov and the scientific literature.

Annotation of functionally relevant CNVs

We applied a two step procedure to determine whether the annotated genes were functionally amplified or deleted in each specific

sample. First, a collection of functional relevant amplifications and deletions was curated by integrating the GISTIC 2.0 analysis of the

PancanAtlas dataset and the OncoKB database. GISTIC was run separately on each individual tumor type, and then globally on the

entire PanCanAtlas dataset, yielding a list of recurrently amplified and deleted regions of interest (ROIs). Default parameters of

GISTIC 2.0 were used, with the confidence level set to 0.95. For Genes within ROIs, copy number variants consistent with the

role of the gene (amplification of OGs and deletions of TSGs) were retained. Gene-specific copy number variants that were labeled

as oncogenic, likely oncogenic or predicted oncogenic in OncoKBwere also retained, yielding a list of gene-level functional CNVs. As

an additional validation step, we individually inspected each of the gene level calls to ensure that there was a good correlation

between copy-number status and gene expression, and we excluded calls in genes for which this correlation was non-existent.

Thresholded gene-level amplification/deletion values produced by GISTIC were used for pathway analysis, considering only ampli-

fications (+2) and deep deletions (�2). In total, 7,532 gene amplifications and 5,602 deletions were selected, for a total of 13,134

occurrences.
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Epigenetic silencing
Curated analysis of CDKN2A promoter hypermethylation

CDKN2A promoter methylation was assessed using Illumina Infinium HumanMethylation450 probe cg13601799 located within Exon

1a ofCDKN2A (p16INK4a). We described the selection of this probe for CDKN2Amethylation calling in a prior report (Cancer Genome

Atlas Research Network, 2012). We introduced a further refinement of DNA methylation calling to avoid artifactual hypermethylation

calls due to deep deletion in a gene. In brief, we used Level 1 IDAT files to calculate out-of-band (‘oob’) probe intensities as a sur-

rogate for background intensity, superior to internal negative controls (Triche et al., 2013). cg13601799 is a Type I probe with both

methylated (M) and unmethylated (U) versions in the red color channel, and therefore dye bias is not a concern. We compared the

foreground intensities (M and U) to the empirical distribution of the background intensities (asmeasured by the ‘oob’ probes). We first

called a sample to be methylated when the methylated (M) signal was higher than the 95th percentile of the background (‘oob’)

probes (FDR = 5%). As this locus is unmethylated in normal tissues, the U signals are generally higher than the M signal due to

the presence of contaminating normal cell types.We required a Log2(foreground/background) log-ratio of 2 or greater for the U probe

to ensure that the U signal was derived from tumor cells and not from contaminating normal cells in the case of a tumor with CDKN2A

deletion. If Log2(foreground/background) was < 2 for U and < 0 for M for this probe, then we concluded that this locus was deleted in

the tumor cells, and we then denoted these cases as containing ‘‘no signal’’ (Table S4). We identified 681 such samples, and we had

GISTIC copy number change data for 627 out of these 681. Out of these 627, 471 were called to have high-level deletion for CDKN2A

(�2 in GISTIC calls) and 120 had low level deletion for this gene (�1 in GISTIC calls), validating this approach.

Analysis of DNA hypermethylation at the promoters of other tumor suppressor genes

Epigenetic DNA hypermethylation events at promoters of tumor suppressor genes that are associated with decreased gene expres-

sion were systematically identified using the RESET bioinformatic tool (Saghafinia, Mina et al. manuscript in preparation). RESET

extracts probes that (i) map to gene promoter regions, (ii) are significantly hypermethylated compared to normal tissue samples,

and (iii) are associated with lower transcript levels of the corresponding gene. More specifically, only probes overlapping gene

promoter regions extracted from the FANTOM5 cohort of robust promoters are considered (FANTOM Consortium and the RIKEN

PMI and CLST (DGT) et al., 2014). The status of a probe (dichotomized in hypermethylated and not hypermethylated) is determined

by comparing its beta value to the beta value distribution from adjacent normal tissue samples available in the TCGA sample collec-

tion. Finally, RESET determines whether a hypermethylation event is associated withmRNA downregulation by checking whether the

mRNA expression of the associated gene is significantly decreased in hypermethylated tumors, compared to the not hypermethy-

lated ones. To avoid biases due to intrinsic gene expression and methylation differences between tumor samples of different origins,

we separately applied RESET within each tumor type. For tumor types without normal adjacent samples, the entire set of normal

samples from the TCGA cohort was used to define the background beta value distribution.

In this study, we evaluated all tumor suppressors in ten pathway templates (Table S3). We considered as significant only silencing

events with a false discovery rate FDR < 10% and a RESET score > 1. The results were further manually curated to exclude cases

where themethylation event might be tissue-associated, leading to a list of 15 genes silenced by DNAmethylation (Table S7) Consis-

tently with the procedure used for copy number calls, all hypermethylation occurrences for these 15 genes in all tumor samples were

retained, even if the silencing event was only significantly recurrent in a subset of tumor types. This pancan set of occurrences was

further filtered to increase the likelihood of functional relevance: only the hypermethylation occurrences with a gene expression lower

than the 25 percentile of the gene expression distribution from the unmethylated samples were retained as functional and considered

in the downstream analyses. The sample-specific epigenetic silencing calls are provided as part of the genomic alteration matrix

described below (Table S4).

Gene fusion detection and filtering
TCGA RNA-Seq data were downloaded from Cancer Genomics Hub (CGHub, http://cghub.ucsc.edu) and analyzed using Google

cloud. For each sample, the fastq file was mapped to the human genome (build 38) followed by fusion calling using STAR-Fusion

(parameters:–annotation –coding-effect), EricScript (default parameters) and BREAKFAST (two different minimum distance cut-

offs were used: 5 kb and 100 kb). STAR-Fusion showed higher sensitivity in detecting the fusions reported in previous TCGA studies.

Therefore, we focused on the STAR-Fusion output and integrated EricScript and BREAKFAST output in one of the following filtering

steps: 1) an exclusion list of genes was curated, including uncharacterized genes, immunoglobin genes, mitochondrial genes, etc.

Fusions involving these genes were filtered; 2) Fusions from the same gene or paralog genes (downloaded from https://github.com/

STAR-Fusion/STAR-Fusion_benchmarking_data/tree/master/resources) were filtered; 3) Fusions reported in normal samples were

filtered, including the ones from TCGA normal samples, GTEx tissues (reported in STAR-Fusion output), and non-cancer cell study

(Babiceanu et al.); 4) For the fusions reported by only STAR-Fusion but not EricScript, aminimum value of FFPM (fusion fragments per

million total reads) was required, as suggested by the author; For the fusions reported by both callers, no requirement. 5) Finally,

fusions with exactly the same breakpoints in R 10 samples across different cancer types were removed unless they were reported

in previous TCGA studies (e.g., FGFR3-TACC3).

For our pathway analyses, we included only the fusions that (a) involved at least one gene labeled as TSG in one of our pathway

templates, or (b) involved at least one gene labeled as OG in one of our pathway templates and such that the fusion is labeled as

oncogenic, likely oncogenic or predicted oncogenic in OncoKB. We also included a small set of additional fusions (MAML3-

UBTF, NOTCH2-SEC22B and PIK3CA-TBL1XR) based on recent evidence from the literature. Any fusion failing to satisfy at least
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one of these requirements was excluded from subsequent pathway analyses (although some additional fusions that are clinically

actionable based on OncoKB where included in Figure 7 for completeness). The final set of all fusion calls used in our manuscript

is provided as Table S8.

Generation of Genomic Alteration Matrices (GAMs)
To integrate all the genomic data in a format readily usable in the downstream analyses, the complexity of mutation and CNV data

was summarized into a binary Genomic Alteration Matrix (GAM) representing the occurrence of gene alterations across samples,

provided as Table S4. This matrix includes the set of functionally relevant mutations and CNVs selected for each gene and summa-

rized in the onco-query language column provided as part of each pathway template in Table S3. In the alteration level version of this

matrix, copy number events and point mutation events affecting the same gene were kept distinct. We also included epigenetic

silencing of CDKN2A based on DNA methylation analysis of the gene promoter and the epigenetic silencing of 15 additional genes

uncovered by RESET. The resulting table has entries for 9,125 samples and 411 alterations, for a total of 33,324 occurrences. For

completeness, in Table S4we also provide a version of theGAMwhere alterations are aggregated at the gene level and a third version

were alterations are aggregated at the pathway level for the ten pathways in our analysis.

Analysis of conditional selection between alterations
SELECT, a method that infers conditional selection dependencies between alterations from occurrence patterns (Mina et al., 2017),

was run on the PancanPathway GAM. The default parameters of the R package implementation were used, with 5,000 random

permutations. SELECT analysis was performed at alteration level, considering as separate features the point mutations, copy number

changes, silencing and fusion events affecting the same gene. Alteration type, tumor type and tumor subtype were used as

covariates in the analysis. Only alterations with more than 5 occurrences were considered (0.05% of the samples). In total, SELECT

produced a list of 273 high-scoring motifs between 315 alterations.

Pathway-level analysis of conditional selection
The dependency motifs were summarized at pathway level by considering independently (i) the sum of motif scores between each

pair of pathways, and (ii) the number of significant motifs. The significance of pathway-level interactions was empirically estimated by

comparing the observed sum of motif scores and number of significant motifs to the null distribution obtained by randomly permuting

the pathway annotation of the genes. The two metrics were first tested independently, and the two P values were then combined

using Stouffer’s method. Combined P values were then corrected with the Benjamini-Hochberg method. Corrected P values smaller

than 0.25 were deemed to be significant.

Curation of Clinical Trials
The list of clinical trials for genes in pathways not represented in OncoKB was manually curated from ClinicalTrials.gov (http://

clinicaltrials.gov). Clinical trials with drug compounds targeting pathway members or which described pathway members in their

inclusion or exclusion criteria are reported. Focus was given to ongoing clinical trials. A description of data retrieved from particular

clinical trials is in the READMEworksheet of Table S6. If available, PubChemCompound IDs (https://pubchem.ncbi.nlm.nih.gov/) are

given for drug compounds.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantitative and statistical methods are described above within the context of individual analyses in the Method Details section.

DATA AND SOFTWARE AVAILABILITY

The raw data, processed data and clinical data can be found at the legacy archive of the GDC (https://portal.gdc.cancer.gov/

legacy-archive/search/f) and the TCGA PanCancer Atlas publication page (https://gdc.cancer.gov/about-data/publications/

pancanatlas). The mutation data can be found here (https://gdc.cancer.gov/about-data/publications/mc3-2017).

Data can also be visualized and downloaded using a dedicated section of the cBioPortal for Cancer Genomics (http://www.

cbioportal.org/).

ADDITIONAL RESOURCES

Pathway diagrams were curated using PathwayMapper (Bahceci et al., 2017), a tool that allows visualization and design of pathway

diagrams stylized as in classical TCGA publications. This tool is publicly available online at www.pathwaymapper.org. Our curated

templates provided in Table S3 are accessible as pre-defined pathway diagrams that have been incorporated to the PahtwayMapper

interface. PathwayMapper also acts as an interactive resource that allows to easily overlay user-inputed alteration frequencies on top

of these predefined diagrams.
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Supplemental Figures

Figure S1. Curated Pathways Including Cross-Cross Pathway Interactions, Related to Figure 2

Same as Figure 2, but including cross-pathway interactions.
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Figure S2. Cell-Cycle, Wnt, p53, Nrf2 and PI3K Pathway Alterations, Related to Figure 5

Detailed heatmap of alteration frequencies in members of the Cell-cycle, WNT, TP53 and NRF2 pathways. Shades of red indicate activating event (mutation,

amplification, activating fusion) and shades of blue indicate inactivating event (mutation, homozygous loss, inactivating fusion, epigenetic silencing). Color side

bars show the fraction of samples affected by each type of somatic alteration (or a combination of them) for each pathway gene. Top color bars show the

proportion of different types of alterations for each cancer subtype.
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Figure S3. Hippo, Myc, TGFb and Notch Pathway Alterations, Related to Figure 5

Detailed heatmap of alteration frequencies in members of the Hippo, Myc, TGFb and Notch pathways. Shades of red indicate activating event (mutation,

amplification, activating fusion) and shades of blue indicate inactivating event (mutation, homozygous loss, inactivating fusion, epigenetic silencing). Color side

bars show the fraction of samples affected by each type of somatic alteration (or a combination of them) for each pathway gene. Top color bars show the

proportion of different types of alterations for each cancer subtype.
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Figure S4. Additional Results for Conditional Selection, Related to Figure 6

(A–E) Mutual exclusivity (in purple) and Co-occurrence (in green) between alterations in (A) PI3K and RTK pathways, (B) Cell-cycle and p53 pathways, (C) p53 and

PI3K pathways, (D) p53 and Hippo pathways, and (E) cell-cycle and Nrf2 pathways.
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