248 research outputs found

    Molecular polymorphism, differentiation and introgression in the period gene between Lutzomyia intermedia and Lutzomyia whitmani

    Get PDF
    BACKGROUND: Lutzomyia intermedia and Lutzomyia whitmani (Diptera: Psychodidae) are important and very closely related vector species of cutaneous leishmaniasis in Brazil, which are distinguishable by a few morphological differences. There is evidence of mitochondrial introgression between the two species but it is not clear whether gene flow also occurs in nuclear genes. RESULTS: We analyzed the molecular variation within the clock gene period (per) of these two species in five different localities in Eastern Brazil. AMOVA and Fst estimates showed no evidence for geographical differentiation within species. On the other hand, the values were highly significant for both analyses between species. The two species show no fixed differences and a higher number of shared polymorphisms compared to exclusive mutations. In addition, some haplotypes that are "typical" of one species were found in some individuals of the other species suggesting either the persistence of old polymorphisms or the occurrence of introgression. Two tests of gene flow, one based on linkage disequilibrium and a MCMC analysis based on coalescence, suggest that the two species might be exchanging alleles at the per locus. CONCLUSION: Introgression might be occurring between L. intermedia and L. whitmani in period, a gene controlling behavioral rhythms in Drosophila. This result raises the question of whether similar phenomena are occurring at other loci controlling important aspects of behavior and vectorial capacity

    Comparison of mosquito and fly derived DNA as a tool for sampling vertebrate biodiversity in suburban forests in Berlin, Germany

    Get PDF
    The use of invertebrate‐derived DNA (iDNA) is a promising non‐invasive tool to monitor wildlife. While most studies have been carried out in dense tropical and sub‐tropical forests and have focused on the use of a single category of invertebrates, this study compares the use of flies and mosquitoes‐derived DNA to assess vertebrate diversity in semi‐urban environments. We conducted our sampling in four different forest plots in Berlin, Germany. Pools of flies and non‐bloodfed mosquitoes were metabarcoded using 108‐bp vertebrate‐specific 12 S rRNA (12 S‐V5) and 94‐bp mammal‐specific 16 S rRNA (16Smam) mitochondrial markers, and individual bloodfed mosquitoes were sequenced using the 340‐bp vertebrate‐specific 12 S rRNA fragment (Mam‐12 S‐340). Most sequencing was only successful for mammal species. From the fly pools, we detected 10 mammal species using 16Smam, and six species using 12 S‐V5. From the non‐bloodfed mosquito pools, we only amplified putative contaminant DNA, indicating that mosquito females without visual signs of a blood meal carry no traces of vertebrate DNA. Finally, in the bloodfed mosquitoes, we identified four mammal species. We did not find significant differences in the proportion of mammal species detected regarding the total available number of species between sampling localities. Fly samples were easier to obtain and more abundant over the sampled localities compared to mosquito samples. We conclude that, while there are a few advantages in using mosquito blood meals, the use of flies in the detection of wildlife in a suburban environment is more effective in terms of collection of samples and detection of vertebrates, although this technique is limited to few mammal species in the urban environment

    Genotyping And Descriptive Proteomics Of A Potential Zoonotic Canine Strain Of Giardia Duodenalis, Infective To Mice

    Get PDF
    Conselho Nacional de Desenvolvimento CientĂ­fico e TecnolĂłgico (CNPq)The zoonotic potential of giardiasis, as proposed by WHO since the late 70's, has been largely confirmed in this century. The genetic assemblages A and B of Giardia duodenalis are frequently isolated from human and canine hosts. Most of the assemblage A strains are not infective to adult mice, which can limit the range of studies regarding to biology of G. duodenalis, including virulence factors and the interaction with host immune system. This study aimed to determine the infectivity in mice of an assemblage A Giardia duodenalis strain (BHFC1) isolated from a dog and to classify the strain in sub-assemblages (Al, All, AIII) through the phylogenetic analysis of beta-giardin (bg), triose phosphate isomerase (tpi) and glutamate dehydrogenase (gdh) genes. In addition, the proteomic profile of soluble and insoluble protein fractions of trophozoites was analyzed by 2D-electrophoresis. Accordingly, trophozoites of BHFC1 were highly infective to Swiss mice. The phylogenetic analysis of tpi and gdh revealed that BHFC1 clustered to sub-assemblage Al. The proteomic map of soluble and insoluble protein fractions led to the identification of 187 proteins of G. duodenalis, 27 of them corresponding to hypothetical proteins. Considering both soluble and soluble fractions, the vast majority of the identified proteins (n = 82) were classified as metabolic proteins, mainly associated with carbon and lipid metabolism, including 53 proteins with catalytic activity. Some of the identified proteins correspond to antigens while others can be correlated with virulence. Besides a significant complementation to the proteomic data of G. duodenalis, these data provide an important source of information for future studies on various aspects of the biology of this parasite, such as virulence factors and host and pathogen interactions.1110CNPq (Brazilian National Council for Scientific and Technological Development)FAPEMIG (State Funding Agency of Minas Gerais (FAPEMIG))INCTV (National Institute of Science and Technology in Vaccines)Conselho Nacional de Desenvolvimento CientĂ­fico e TecnolĂłgico (CNPq

    Whole genome sequencing and methylome analysis of the wild guinea pig

    Get PDF
    Abstract Background: DNA methylation is a heritable mechanism that acts in response to environmental changes, lifestyle and diseases by influencing gene expression in eukaryotes. Epigenetic studies of wild organisms are mandatory to understand their role in e.g. adaptational processes in the great variety of ecological niches. However, strategies to address those questions on a methylome scale are widely missing. In this study we present such a strategy and describe a whole genome sequence and methylome analysis of the wild guinea pig

    A hybrid-hierarchical genome assembly strategy to sequence the invasive golden mussel Limnoperna fortunei

    Get PDF
    ABSTRACT Background: For more than 25 years, the golden mussel Limnoperna fortunei has aggressively invaded South American freshwaters, having travelled more than 5,000 km upstream across five countries. Along the way, the golden mussel has outcompeted native species and economically harmed aquaculture, hydroelectric powers, and ship transit. We have sequenced the complete genome of the golden mussel to understand the molecular basis of its invasiveness and search for ways to control it. Findings: We assembled the 1.6 Gb genome into 20548 scaffolds with an N50 length of 312 Kb using a hybrid and hierarchical assembly strategy from short and long DNA reads and transcriptomes. A total of 60717 coding genes were inferred from a customized transcriptome-trained AUGUSTUS run. We also compared predicted protein sets with those of complete molluscan genomes, revealing an exacerbation of proteinbinding domains in L. fortunei. Conclusions: We built one of the best bivalve genome assemblies available using a cost-effective approach using Illumina pair-end, mate pair, and PacBio long reads. We expect that the continuous and careful annotation of L. fortunei's genome will contribute to the investigation of bivalve genetics, evolution, and invasiveness, as well as to the development of biotechnological tools for aquatic pest control

    The era of reference genomes in conservation genomics

    Full text link
    Progress in genome sequencing now enables the large-scale generation of reference genomes. Various international initiatives aim to generate reference genomes representing global biodiversity. These genomes provide unique insights into genomic diversity and architecture, thereby enabling comprehensive analyses of population and functional genomics, and are expected to revolutionize conservation genomics

    The Transcriptome of Lutzomyia longipalpis (Diptera: Psychodidae) Male Reproductive Organs

    Get PDF
    BACKGROUND: It has been suggested that genes involved in the reproductive biology of insect disease vectors are potential targets for future alternative methods of control. Little is known about the molecular biology of reproduction in phlebotomine sand flies and there is no information available concerning genes that are expressed in male reproductive organs of Lutzomyia longipalpis, the main vector of American visceral leishmaniasis and a species complex. METHODS/PRINCIPAL FINDINGS: We generated 2678 high quality ESTs ("Expressed Sequence Tags") of L. longipalpis male reproductive organs that were grouped in 1391 non-redundant sequences (1136 singlets and 255 clusters). BLAST analysis revealed that only 57% of these sequences share similarity with a L. longipalpis female EST database. Although no more than 36% of the non-redundant sequences showed similarity to protein sequences deposited in databases, more than half of them presented the best-match hits with mosquito genes. Gene ontology analysis identified subsets of genes involved in biological processes such as protein biosynthesis and DNA replication, which are probably associated with spermatogenesis. A number of non-redundant sequences were also identified as putative male reproductive gland proteins (mRGPs), also known as male accessory gland protein genes (Acps). CONCLUSIONS: The transcriptome analysis of L. longipalpis male reproductive organs is one step further in the study of the molecular basis of the reproductive biology of this important species complex. It has allowed the identification of genes potentially involved in spermatogenesis as well as putative mRGPs sequences, which have been studied in many insect species because of their effects on female post-mating behavior and physiology and their potential role in sexual selection and speciation. These data open a number of new avenues for further research in the molecular and evolutionary reproductive biology of sand flies

    Transcriptome profiling of ontogeny in the acridid grasshopper Chorthippus biguttulus

    Get PDF
    Acridid grasshoppers (Orthoptera:Acrididae) are widely used model organisms for developmental, evolutionary, and neurobiological research. Although there has been recent influx of orthopteran transcriptomic resources, many use pooled ontogenetic stages obscuring information about changes in gene expression during development. Here we developed a de novo transcriptome spanning 7 stages in the life cycle of the acridid grasshopper Chorthippus biguttulus. Samples from different stages encompassing embryonic development through adults were used for transcriptomic profiling, revealing patterns of differential gene expression that highlight processes in the different life stages. These patterns were validated with semi-quantitative RT-PCR. Embryonic development showed a strongly differentiated expression pattern compared to all of the other stages and genes upregulated in this stage were involved in signaling, cellular differentiation, and organ development. Our study is one of the first to examine gene expression during post-embryonic development in a hemimetabolous insect and we found that only the fourth and fifth instars had clusters of genes upregulated during these stages. These genes are involved in various processes ranging from synthesis of biogenic amines to chitin binding. These observations indicate that post-embryonic ontogeny is not a continuous process and that some instars are differentiated. Finally, genes upregulated in the imago were generally involved in aging and immunity. Our study highlights the importance of looking at ontogeny as a whole and indicates promising directions for future research in orthopteran development

    The era of reference genomes in conservation genomics

    Get PDF
    Progress in genome sequencing now enables the large-scale generation of reference genomes. Various international initiatives aim to generate reference genomes representing global biodiversity. These genomes provide unique insights into genomic diversity and architecture, thereby enabling comprehensive analyses of population and functional genomics, and are expected to revolutionize conservation genomics
    • 

    corecore