8 research outputs found

    Efficacy and safety of baricitinib in hospitalized adults with severe or critical COVID‑19 (Bari‑SolidAct): a randomised, double‑blind, placebo‑controlled phase 3 trial

    Get PDF
    Background Baricitinib has shown efcacy in hospitalized patients with COVID-19, but no placebo-controlled trials have focused specifcally on severe/critical COVID, including vaccinated participants. Methods Bari-SolidAct is a phase-3, multicentre, randomised, double-blind, placebo-controlled trial, enrolling participants from June 3, 2021 to March 7, 2022, stopped prematurely for external evidence. Patients with severe/ critical COVID-19 were randomised to Baricitinib 4 mg once daily or placebo, added to standard of care. The primary endpoint was all-cause mortality within 60 days. Participants were remotely followed to day 90 for safety and patient related outcome measures. Results Two hundred ninety-nine patients were screened, 284 randomised, and 275 received study drug or placebo and were included in the modifed intent-to-treat analyses (139 receiving baricitinib and 136 placebo). Median age was 60 (IQR 49–69) years, 77% were male and 35% had received at least one dose of SARS-CoV2 vaccine. There were 21 deaths at day 60 in each group, 15.1% in the baricitinib group and 15.4% in the placebo group (adjusted absolute diference and 95% CI −0.1% [−8·3 to 8·0]). In sensitivity analysis censoring observations after drug discontinuation or rescue therapy (tocilizumab/increased steroid dose), proportions of death were 5.8% versus 8.8% (−3.2% [−9.0 to 2.7]), respectively. There were 148 serious adverse events in 46 participants (33.1%) receiving baricitinib and 155 in 51 participants (37.5%) receiving placebo. In subgroup analyses, there was a potential interaction between vaccination status and treatment allocation on 60-day mortality. In a subsequent post hoc analysis there was a signifcant interac‑ tion between vaccination status and treatment allocation on the occurrence of serious adverse events, with more respiratory complications and severe infections in vaccinated participants treated with baricitinib. Vaccinated partici‑ pants were on average 11 years older, with more comorbidities. Conclusion This clinical trial was prematurely stopped for external evidence and therefore underpowered to con‑ clude on a potential survival beneft of baricitinib in severe/critical COVID-19. We observed a possible safety signal in vaccinated participants, who were older with more comorbidities. Although based on a post-hoc analysis, these fnd‑ ings warrant further investigation in other trials and real-world studies

    Ernest L. Mazzaferri, MD, MACP (1936-2013)

    No full text
    Professor and physician Dr. Ernest L. Mazzaferri Sr. passed away on May 14, 2013, at 76 years of age ( 1 , 2 ). Ernie is remembered as a caring and talented physician, an accomplished scholar and educator, as well as a loving husband, father, and grandfather. He was a luminary figure, and few people have had a greater impact in thyroidology in recent decades. Here we include reflections from a few of us that knew him, as well as commentaries from people who did not. Ernie's passion was caring for patients and how to improve their care. Our goal is to pay tribute and memorialize the person we knew and the impact that he had on patients around the world through his dedication to research, lecturing, and writing that achieved remarkable global influence

    Clinical phenotypes and quality of life to define post-COVID-19 syndrome: a cluster analysis of the multinational, prospective ORCHESTRA cohort

    Get PDF
    Background: Lack of specific definitions of clinical characteristics, disease severity, and risk and preventive factors of post-COVID-19 syndrome (PCS) severely impacts research and discovery of new preventive and therapeutics drugs. Methods: This prospective multicenter cohort study was conducted from February 2020 to June 2022 in 5 countries, enrolling SARS-CoV-2 out- and in-patients followed at 3-, 6-, and 12-month from diagnosis, with assessment of clinical and biochemical features, antibody (Ab) response, Variant of Concern (VoC), and physical and mental quality of life (QoL). Outcome of interest was identification of risk and protective factors of PCS by clinical phenotype, setting, severity of disease, treatment, and vaccination status. We used SF-36 questionnaire to assess evolution in QoL index during follow-up and unsupervised machine learning algorithms (principal component analysis, PCA) to explore symptom clusters. Severity of PCS was defined by clinical phenotype and QoL. We also used generalized linear models to analyse the impact of PCS on QoL and associated risk and preventive factors. CT registration number: NCT05097677. Findings: Among 1796 patients enrolled, 1030 (57%) suffered from at least one symptom at 12-month. PCA identified 4 clinical phenotypes: chronic fatigue-like syndrome (CFs: fatigue, headache and memory loss, 757 patients, 42%), respiratory syndrome (REs: cough and dyspnoea, 502, 23%); chronic pain syndrome (CPs: arthralgia and myalgia, 399, 22%); and neurosensorial syndrome (NSs: alteration in taste and smell, 197, 11%). Determinants of clinical phenotypes were different (all comparisons p < 0.05): being female increased risk of CPs, NSs, and CFs; chronic pulmonary diseases of REs; neurological symptoms at SARS-CoV-2 diagnosis of REs, NSs, and CFs; oxygen therapy of CFs and REs; and gastrointestinal symptoms at SARS-CoV-2 diagnosis of CFs. Early treatment of SARS-CoV-2 infection with monoclonal Ab (all clinical phenotypes), corticosteroids therapy for mild/severe cases (NSs), and SARS-CoV-2 vaccination (CPs) were less likely to be associated to PCS (all comparisons p < 0.05). Highest reduction in QoL was detected in REs and CPs (43.57 and 43.86 vs 57.32 in PCS-negative controls, p < 0.001). Female sex (p < 0.001), gastrointestinal symptoms (p = 0.034) and renal complications (p = 0.002) during the acute infection were likely to increase risk of severe PCS (QoL <50). Vaccination and early treatment with monoclonal Ab reduced the risk of severe PCS (p = 0.01 and p = 0.03, respectively). Interpretation: Our study provides new evidence suggesting that PCS can be classified by clinical phenotypes with different impact on QoL, underlying possible different pathogenic mechanisms. We identified factors associated to each clinical phenotype and to severe PCS. These results might help in designing pathogenesis studies and in selecting high-risk patients for inclusion in therapeutic and management clinical trials. Funding: The study received funding from the Horizon 2020 ORCHESTRA project, grant 101016167; from the Netherlands Organisation for Health Research and Development (ZonMw), grant 10430012010023; from Inserm, REACTing (REsearch & ACtion emergING infectious diseases) consortium and the French Ministry of Health, grant PHRC 20-0424

    Efficacy and safety of baricitinib in hospitalized adults with severe or critical COVID-19 (Bari-SolidAct): a randomised, double-blind, placebo-controlled phase 3 trial

    Get PDF
    Abstract Background Baricitinib has shown efficacy in hospitalized patients with COVID-19, but no placebo-controlled trials have focused specifically on severe/critical COVID, including vaccinated participants. Methods Bari-SolidAct is a phase-3, multicentre, randomised, double-blind, placebo-controlled trial, enrolling participants from June 3, 2021 to March 7, 2022, stopped prematurely for external evidence. Patients with severe/critical COVID-19 were randomised to Baricitinib 4 mg once daily or placebo, added to standard of care. The primary endpoint was all-cause mortality within 60 days. Participants were remotely followed to day 90 for safety and patient related outcome measures. Results Two hundred ninety-nine patients were screened, 284 randomised, and 275 received study drug or placebo and were included in the modified intent-to-treat analyses (139 receiving baricitinib and 136 placebo). Median age was 60 (IQR 49–69) years, 77% were male and 35% had received at least one dose of SARS-CoV2 vaccine. There were 21 deaths at day 60 in each group, 15.1% in the baricitinib group and 15.4% in the placebo group (adjusted absolute difference and 95% CI − 0.1% [− 8·3 to 8·0]). In sensitivity analysis censoring observations after drug discontinuation or rescue therapy (tocilizumab/increased steroid dose), proportions of death were 5.8% versus 8.8% (− 3.2% [− 9.0 to 2.7]), respectively. There were 148 serious adverse events in 46 participants (33.1%) receiving baricitinib and 155 in 51 participants (37.5%) receiving placebo. In subgroup analyses, there was a potential interaction between vaccination status and treatment allocation on 60-day mortality. In a subsequent post hoc analysis there was a significant interaction between vaccination status and treatment allocation on the occurrence of serious adverse events, with more respiratory complications and severe infections in vaccinated participants treated with baricitinib. Vaccinated participants were on average 11 years older, with more comorbidities. Conclusion This clinical trial was prematurely stopped for external evidence and therefore underpowered to conclude on a potential survival benefit of baricitinib in severe/critical COVID-19. We observed a possible safety signal in vaccinated participants, who were older with more comorbidities. Although based on a post-hoc analysis, these findings warrant further investigation in other trials and real-world studies. Trial registration Bari-SolidAct is registered at NCT04891133 (registered May 18, 2021) and EUClinicalTrials.eu ( 2022-500385-99-00 )

    Implementation of a centralized pharmacovigilance system in academic pan‐European clinical trials : experience from EU‐Response and conect4children consortia

    No full text
    Setting-up a high quality, compliant and efficient pharmacovigilance (PV) system in multi-country clinical trials can be more challenging for academic sponsors than for companies. To ensure the safety of all participants in academic studies and that the PV system fulfils all regulations, we set up a centralized PV system that allows sponsors to delegate work on PV. This initiative was put in practice by our Inserm-ANRS MIE PV department in two distinct multinational European consortia with 19 participating countries: conect4children (c4c) for paediatrics research and EU-Response for Covid-19 platform trials. The centralized PV system consists of some key procedures to harmonize the complex safety processes, creation of a local safety officer (LSO) network and centralization of all safety activities. The key procedures described the safety management plan for each trial and how tasks were shared and delegated between all stakeholders. Processing of serious adverse events (SAEs) in a unique database guaranteed the full control of the safety data and continuous evaluation of the risk-benefit ratio. The LSO network participated in efficient regulatory compliance across multiple countries. In total, there were 1312 SAEs in EU-Response and 83 SAEs in c4c in the four trials. We present here the lessons learnt from our experience in four clinical trials. We managed heterogeneous European local requirements and implemented efficient communication with all trial teams. Our approach builds capacity for PV that can be used by multiple academic sponsors

    Clinical phenotypes and quality of life to define post-COVID-19 syndrome: a cluster analysis of the multinational, prospective ORCHESTRA cohortResearch in context

    No full text
    Summary: Background: Lack of specific definitions of clinical characteristics, disease severity, and risk and preventive factors of post-COVID-19 syndrome (PCS) severely impacts research and discovery of new preventive and therapeutics drugs. Methods: This prospective multicenter cohort study was conducted from February 2020 to June 2022 in 5 countries, enrolling SARS-CoV-2 out- and in-patients followed at 3-, 6-, and 12-month from diagnosis, with assessment of clinical and biochemical features, antibody (Ab) response, Variant of Concern (VoC), and physical and mental quality of life (QoL). Outcome of interest was identification of risk and protective factors of PCS by clinical phenotype, setting, severity of disease, treatment, and vaccination status. We used SF-36 questionnaire to assess evolution in QoL index during follow-up and unsupervised machine learning algorithms (principal component analysis, PCA) to explore symptom clusters. Severity of PCS was defined by clinical phenotype and QoL. We also used generalized linear models to analyse the impact of PCS on QoL and associated risk and preventive factors. CT registration number: NCT05097677. Findings: Among 1796 patients enrolled, 1030 (57%) suffered from at least one symptom at 12-month. PCA identified 4 clinical phenotypes: chronic fatigue-like syndrome (CFs: fatigue, headache and memory loss, 757 patients, 42%), respiratory syndrome (REs: cough and dyspnoea, 502, 23%); chronic pain syndrome (CPs: arthralgia and myalgia, 399, 22%); and neurosensorial syndrome (NSs: alteration in taste and smell, 197, 11%). Determinants of clinical phenotypes were different (all comparisons p < 0.05): being female increased risk of CPs, NSs, and CFs; chronic pulmonary diseases of REs; neurological symptoms at SARS-CoV-2 diagnosis of REs, NSs, and CFs; oxygen therapy of CFs and REs; and gastrointestinal symptoms at SARS-CoV-2 diagnosis of CFs. Early treatment of SARS-CoV-2 infection with monoclonal Ab (all clinical phenotypes), corticosteroids therapy for mild/severe cases (NSs), and SARS-CoV-2 vaccination (CPs) were less likely to be associated to PCS (all comparisons p < 0.05). Highest reduction in QoL was detected in REs and CPs (43.57 and 43.86 vs 57.32 in PCS-negative controls, p < 0.001). Female sex (p < 0.001), gastrointestinal symptoms (p = 0.034) and renal complications (p = 0.002) during the acute infection were likely to increase risk of severe PCS (QoL <50). Vaccination and early treatment with monoclonal Ab reduced the risk of severe PCS (p = 0.01 and p = 0.03, respectively). Interpretation: Our study provides new evidence suggesting that PCS can be classified by clinical phenotypes with different impact on QoL, underlying possible different pathogenic mechanisms. We identified factors associated to each clinical phenotype and to severe PCS. These results might help in designing pathogenesis studies and in selecting high-risk patients for inclusion in therapeutic and management clinical trials. Funding: The study received funding from the Horizon 2020 ORCHESTRA project, grant 101016167; from the Netherlands Organisation for Health Research and Development (ZonMw), grant 10430012010023; from Inserm, REACTing (REsearch &amp; ACtion emergING infectious diseases) consortium and the French Ministry of Health, grant PHRC 20-0424

    Efficacy and safety of baricitinib in hospitalized adults with severe or critical COVID-19 (Bari-SolidAct): a randomised, double-blind, placebo-controlled phase 3 trial

    No full text
    International audienceAbstract Background Baricitinib has shown efficacy in hospitalized patients with COVID-19, but no placebo-controlled trials have focused specifically on severe/critical COVID, including vaccinated participants. Methods Bari-SolidAct is a phase-3, multicentre, randomised, double-blind, placebo-controlled trial, enrolling participants from June 3, 2021 to March 7, 2022, stopped prematurely for external evidence. Patients with severe/critical COVID-19 were randomised to Baricitinib 4 mg once daily or placebo, added to standard of care. The primary endpoint was all-cause mortality within 60 days. Participants were remotely followed to day 90 for safety and patient related outcome measures. Results Two hundred ninety-nine patients were screened, 284 randomised, and 275 received study drug or placebo and were included in the modified intent-to-treat analyses (139 receiving baricitinib and 136 placebo). Median age was 60 (IQR 49–69) years, 77% were male and 35% had received at least one dose of SARS-CoV2 vaccine. There were 21 deaths at day 60 in each group, 15.1% in the baricitinib group and 15.4% in the placebo group (adjusted absolute difference and 95% CI − 0.1% [− 8·3 to 8·0]). In sensitivity analysis censoring observations after drug discontinuation or rescue therapy (tocilizumab/increased steroid dose), proportions of death were 5.8% versus 8.8% (− 3.2% [− 9.0 to 2.7]), respectively. There were 148 serious adverse events in 46 participants (33.1%) receiving baricitinib and 155 in 51 participants (37.5%) receiving placebo. In subgroup analyses, there was a potential interaction between vaccination status and treatment allocation on 60-day mortality. In a subsequent post hoc analysis there was a significant interaction between vaccination status and treatment allocation on the occurrence of serious adverse events, with more respiratory complications and severe infections in vaccinated participants treated with baricitinib. Vaccinated participants were on average 11 years older, with more comorbidities. Conclusion This clinical trial was prematurely stopped for external evidence and therefore underpowered to conclude on a potential survival benefit of baricitinib in severe/critical COVID-19. We observed a possible safety signal in vaccinated participants, who were older with more comorbidities. Although based on a post-hoc analysis, these findings warrant further investigation in other trials and real-world studies. Trial registration Bari-SolidAct is registered at NCT04891133 (registered May 18, 2021) and EUClinicalTrials.eu ( 2022-500385-99-00 )
    corecore