12 research outputs found

    Highly efficient t2 cobalt ferrite nanoparticles vectorized for internalization in cancer cells

    Get PDF
    Uniform cobalt ferrite nanoparticles have been synthesized using an electrochemical synthesis method in aqueous media. Their colloidal, magnetic, and relaxometric properties have been analyzed. The novelty of this synthesis relies on the use of iron and cobalt foils as precursors, which assures the reproducibility of the iron and cobalt ratio in the structure. A stable and biocompatible targeting conjugate nanoparticle-folic acid (NP-FA) was developed that was capable of targeting FA receptor positivity in HeLa (human cervical cancer) cancer cells. The biocompatibility of NP-FA was assessed in vitro in HeLa cells using the MTT assay, and morphological analysis of the cytoskeleton was performed. A high level of NP-FA binding to HeLa cells was confirmed through qualitative in vitro targeting studies. A value of 479 Fe+Co mM-1s-1 of transverse relaxivity (r2 ) was obtained in colloidal suspension. In addition, in vitro analysis in HeLa cells also showed an important effect in negative T2 contrast. Therefore, the results show that NP-FA can be a potential biomaterial for use in bio medical trials, especially as a contrast agent in magnetic resonance imaging (MRI)

    Bimetallic Intersection in PdFe@FeOx-C Nanomaterial for Enhanced Water Splitting Electrocatalysis

    Get PDF
    Supported Fe-doped Pd-nanoparticles (NPs) are prepared via soft transfor-mation of a PdFe-metal oraganic framework (MOF). The thus synthesized bimetallic PdFe-NPs are supported on FeOx@C layers, which are essential for developing well-defined and distributed small NPs, 2.3 nm with 35% metal loading. They are used as bifunctional nanocatalysts for the electro-catalytic water splitting process. They display superior mass activity for the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER), both in alkaline and acid media, compared with those obtained for benchmarking platinum HER catalyst, and ruthenium, and iridium oxide OER catalysts. PdFe-NPs also exhibit outstanding stability against sintering that can be explained by the protecting role of graphitic carbon layers provided by the organic linker of the MOF. Additionally, the superior electrocatalytic performance of the bimetallic PdFe-NPs compared with those of monometallic Pd/C NPs and FeOx points to a synergetic effect induced by Fe-Pd interactions that facilitates the water splitting reaction. This is supported by additional characterization of the PdFe-NPs prior and post electrolysis by TEM, XRD, X-ray photoelectron spectroscopy, and Raman revealing that dispersed PdFe NPs on FeOx@C promote interactions between Pd and Fe, most likely to be Pd-O-Fe active centers

    MOF-mediated synthesis of supported Fe-doped Pd nanoparticles under mild conditions for magnetically recoverable catalysis

    Get PDF
    Metal-organic framework (MOF)-driven synthesis is considered as a promising alternative for the development of new catalytic materials with well-designed active sites. This synthetic approach is used here to gradually transform a new bimetallic MOF, with Pd and Fe as the metal components, by the in situ generation of aniline under mild conditions. This methodology results in a compositionally homogeneous nanocomposite formed by Fe-doped Pd nanoparticles that, in turn, are supported on iron oxide-doped carbon. The nanocomposite has been fully characterized by several techniques such as IR and Raman spectroscopy, TEM, XPS, and XAS. The performance of this nanocomposite as an heterogeneous catalyst for hydrogenation of nitroarenes and nitrobenzene coupling with benzaldehyde has been evaluated, proving it to be an efficient and reusable catalyst

    How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios

    Get PDF
    The use of magnetic nanoparticles (MNPs) to locally increase the temperature at the nanoscale under the remote application of alternating magnetic fields (magnetic particle hyperthermia, MHT) has become an important subject of nanomedicine multidisciplinary research, focusing among other topics on the optimization of the heating performance of MNPs and their assemblies under the effect of the magnetic field. We report experimental data of heat released by MNPs using a wide range of anisometric shapes and their assemblies in different media. We outline a basic theoretical investigation, which assists the interpretation of the experimental data, including the effect of the size, shape and assembly of MNPs on the MNPs' hysteresis loops and the maximum heat delivered. We report heat release data of anisometric MNPs, including nanodisks, spindles (elongated nanoparticles) and nanocubes, analysing, for a given shape, the size dependence. We study the MNPs either acting as individuals or assembled through a magnetic-field-assisted method. Thus, the physical geometrical arrangement of these anisometric particles, the magnetization switching and the heat release (by means of the determination of the specific adsorption rate, SAR values) under the application of AC fields have been analysed and compared in aqueous suspensions and after immobilization in agar matrix mimicking the tumour environment. The different nano-systems were analysed when dispersed at random or in assembled configurations. We report a systematic fall in the SAR for all anisometric MNPs randomly embedded in a viscous environment. However, certain anisometric shapes will have a less marked, an almost total preservation or even an increase in SAR when embedded in a viscous environment with certain orientation, in contrast to the measurements in water solution. Discrepancies between theoretical and experimental values reflect the complexity of the systems due to the interplay of different factors such as size, shape and nanoparticle assembly due to magnetic interactions. We demonstrate that magnetic assembly holds great potential for producing materials with high functional and structural diversity, as we transform our nanoscale building blocks (anisometric MNPs) into a material displaying enhanced SAR properties

    Developing and understanding Leaching-Resistant cobalt nanoparticles via N/P incorporation for liquid phase hydroformylation

    Get PDF
    The ultimate target in heterogeneous catalysis is the achievement of robust, resilient and highly efficient materials capable of resisting industrial reaction conditions. Pursuing that goal in liquid-phase hydroformylation poses a unique challenge due to carbon monoxide-induced metal carbonyl species formation, which is directly related to the formation of active homogeneous catalysts by metal leaching. Herein, supported heteroatom-incorporated (P and N) Co nanoparticles were developed to enhance the resistance compared with bare Co nanoparticles. The samples underwent characterization using operando XPS, XAS and HR electron microscopy. Overall, P- and N-doped catalysts increased reusability and suppressed leaching. Among the studied catalysts, the one with N as a dopant, CoNx@NC, presents excellent catalytic results for a Co-based catalyst, with a 94% conversion and a selectivity to aldehydes of 80% in only 7.5 h. Even under milder conditions, this catalyst outperformed existing benchmarks in Turnover Numbers (TON) and productivity. In addition, computational simulations provided atomistic insights, shedding light on the remarkable resistance of small Co clusters interacting with N-doped carbon patches

    Las facies terrígenas del Muschelkalk basal en el extremo noroccidental de la Cordillera Ibérica

    No full text
    Clastic Materials of basal Muschelkalk in the northestern edge of Iberian Ranges represent subtidal environments and even high energy events in the inner platform (presence of H.C.S.). Such events disturb the inter and supratidal sedimentation development of both under and overlaying unit

    Direct 3D printing of zero valent iron@polylactic acid catalyst for tetracycline degradation with magnetically inducing active persulfate

    No full text
    Catalyst stability has become a challenging issue for advanced oxidation processes (AOPs). Herein, we report an alternative method based on 3D printing technology to obtain zero-valent iron polylactic acid prototypes (ZVI@PLA) in a single step and without post etching treatment. ZVI@PLA was used to activate persulfate (PS) for the removal of Tetracycline (TC) in recirculating mode under two different heating methodologies, thermal bath and contactless heating promoted by magnetic induction (MIH). The effect of both heating methodologies was systematically analysed by comparing the kinetic constant of the degradation processes. It was demonstrated that the non-contact heating of ZVI by MIH reactivates the surface of the catalyst, renewing the surface iron content exposed to the pollutant solution, which makes the ZVI@PLA catalyst reusable up to 10 cycles with no efficiency reduction. In contrast, by using a conventional thermal bath, the kinetic constant gradually decreases over the 10 cycles, because of the superficial iron consumption, being the kinetic constant 5 times lower in the 10th run compared to MIH experiment. X-ray diffraction and Mössbauer spectroscopy confirmed the presence of metallic iron embedded in the ZVI@PLA prototype, whose crystalline structure remained unchanged for 10th cycles of MIH. Moreover, it was proven that with no contact heating technology at low magnetic fields (12.2 mT), the solution temperature does not increase, but only the surface of the catalyst does. Under these superficial heated conditions, kinetic rate is increased up to 0.016 min compared to the value of 0.0086 min obtained for conventional heating at 20 °C. This increase is explained not only by PS activation by iron leaching but also by the contribution of ZVI in the heterogeneous activation of persulfate.This research was funded by the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with Universidad Autónoma de Madrid in the line of action encouraging youth research doctors, in the context of the V PRICIT (Regional Programme of Research and Technological Innovation), (SI1-PJI-2019-00366) and by the Spanish Ministry of Science, innovation, and Universities under projects PGC2018-095642-B-I00 and PID2019-104600RB-I0
    corecore